Skip to main content

Nonmonotonic Onto-Relational Learning

  • Conference paper
Inductive Logic Programming (ILP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5989))

Included in the following conference series:

Abstract

In this paper we carry on the work on Onto-Relational Learning by investigating the impact of having disjunctive Datalog with default negation either in the language of hypotheses or in the language for the background theory. The inclusion of nonmonotonic features strengthens the ability of our ILP framework to deal with incomplete knowledge. One such ability can turn out to be useful in application domains, such as the Semantic Web. As a showcase we face the problem of inducing an integrity theory for a relational database whose instance is given and whose schema encompasses an ontology and a set of rules linking the database to the ontology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications, 2nd edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  2. Borgida, A.: On the relative expressiveness of description logics and predicate logics. Artificial Intelligence 82(1-2), 353–367 (1996)

    Article  MathSciNet  Google Scholar 

  3. Buntine, W.: Generalized subsumption and its application to induction and redundancy. Artificial Intelligence 36(2), 149–176 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog (and never dared to ask). IEEE Transactions on Knowledge and Data Engineering 1(1), 146–166 (1989)

    Article  Google Scholar 

  5. De Raedt, L., Bruynooghe, M.: A theory of clausal discovery. In: IJCAI, pp. 1058–1063 (1993)

    Google Scholar 

  6. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on Database Systems 22(3), 364–418 (1997)

    Article  Google Scholar 

  7. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9(3/4), 365–386 (1991)

    Article  Google Scholar 

  8. Gruber, T.: A translation approach to portable ontology specifications. Knowledge Acquisition 5, 199–220 (1993)

    Article  Google Scholar 

  9. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive description logics. Logic Journal of the IGPL 8(3), 239–263 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lisi, F.A., Esposito, F.: Foundations of Onto-Relational Learning. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 158–175. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Plotkin, G.D.: A further note on inductive generalization. Machine Intelligence 6, 101–121 (1971)

    MATH  MathSciNet  Google Scholar 

  12. Rosati, R.: Semantic and computational advantages of the safe integration of ontologies and rules. In: Fages, F., Soliman, S. (eds.) PPSWR 2005. LNCS, vol. 3703, pp. 50–64. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Rosati, R.: \(\mathcal{DL}\)+log: Tight Integration of Description Logics and Disjunctive Datalog. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proc. of 10th Int. Conf. on Principles of Knowledge Representation and Reasoning, pp. 68–78. AAAI Press, Menlo Park (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lisi, F.A., Esposito, F. (2010). Nonmonotonic Onto-Relational Learning. In: De Raedt, L. (eds) Inductive Logic Programming. ILP 2009. Lecture Notes in Computer Science(), vol 5989. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13840-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13840-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13839-3

  • Online ISBN: 978-3-642-13840-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics