Abstract
In this work we introduce the novel concept of applying constraints into the fiber segmentation problem within a clustering based framework. The segmentation process is guided in an interactive manner. It allows the definition of relationships between individual and sets of fibers. These relationships are realized as pairwise linkage constraints to perform a constrained clustering. Furthermore, they can be refined iteratively, making the process of segmenting tracts quicker and more intuitive. The current implementation is based on a constrained threshold based clustering algorithm using the mean closest point distance as measure to estimate the similarity between fibers. The feasibility and the advantage of constrained clustering are demonstrated via segmentation of a set of specific tracts such as the cortico-spinal tracts and corpus collosum.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bihan, D.L., Mangin, J.-F., Poupon, C., Clark, C.A., Pappata, S., Molko, N., Chabriat, H.: Diffusion Tensor Imaging - Concepts and Applications. Journal of Magnetic Resonance Imaging 13, 534–546 (2001)
Müller, M., Greverus, D., Weibrich, C., Dellani, P., Scheurich, A., Stoeter, P., Fellgiebel, A.: Diagnostic Utility of Hippocampal Size and Mean Diffusivity in Amnestic MCI. Neurobiology of Aging 28, 398–403 (2006)
Cercignani, M., Bozzali, M., Iannucci, G., Comi, G., Filippi, M.: Intra-Voxel and Inter-Voxel Coherence in Patients with Multiple Sclerosis Assessed Using Diffusion Tensor MRI. Journal of Neurology 249, 875–883 (2002)
Poupon, C., Mangin, J.-F., Clark, C., Frouin, V., Régis, J., Bihan, D.L., Bloch, I.: Towards Inference of Human Brain Connectivity from MR Diffusion Tensor Data. Medical Image Analysis 5, 1–15 (2001)
Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In Vivo Fiber Tractography Using DT-MRI Data. Magnetic Resonance in Medicine 44, 625–632 (2000)
Wakana, S., Jiang, H., Nagae-Poetscher, L.M., van Zijl, P.C.M., Mori, S.: Fiber Tract-based Atlas of Human White Matter Anatomy. Radiology 230, 77–87 (2004)
Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., Shimony, J.S., McKinstry, R.C., Burton, H., Raichle, M.E.: Tracking Neuronal Fiber Pathways in the Living Human Brain. Proc. of the National Academy of Sciences of the U.S.A. 96, 10422–10427 (1999)
Toussaint, N., Souplet, J.-C., Fillard, P.: MedINRIA: DT-MRI Processing and Visualization Software. In: Workshop on Interaction in medical image analysis and visualization (2007)
Ding, Z., Gore, J.C., Anderson, A.W.: Classification and Quantification of Neuronal Fiber Pathways Using Diffusion Tensor MRI. Magnetic Resonance in Medicine 49, 716–721 (2003)
Corouge, I., Gouttard, S., Gerig, G.: Towards a Shape Model of White Matter Fiber Bundles Using Diffusion Tensor MRI. In: IEEE Int. Symposium on Biomedical Imaging: Nano to Macro., vol. 1, pp. 344–347 (2004)
Gerig, G., Gouttard, S., Corouge, I.: Analysis of Brain White Matter via Fiber Tract Modeling. In: Proc. of the 26th An. Int. Conf. of the IEEE, EMBS (2004)
Zhang, S., Laidlaw, D.H.: DTI Fiber Clustering and Cross-subject Cluster Analysis. Int. Soc. of Mag. Res. in Med. (2005)
O’Donnell, L., Westin, C.-F.: White Matter Tract Clustering and Correspondence in Populations. In: 8th Int. Conf. on Med. Im. Comp. and Computer-Assisted Intervention, pp. 140–147 (2005)
Jonasson, L., Hagmann, P., Thiran, J., Wedeen, V.: Fiber Tracts of High Angular Resolution Diffusion MRI are Easily Segmented with Spectral Clustering. In: Proc. of 13th An. Meeting ISMRM, Miami, p. 1310, SPIE (2005)
Maddah, M., Mewes, A., Haker, S., Grimson, W., Warfield, S.: Automated Atlas-Based Clustering of White Matter Fiber Tracts from DTMRI. Med. Img. Comp. Assist. Interv. (2005)
O’Donnell, L., Westin, C.-F.: Automatic Tractography Segmentation Using a High-Dimensional White Matter Atlas. IEEE Transac. on Med. Img. 26, 1562–1575 (2007)
Wagstaff, K.: Intelligent Clustering with Instance-Level constraints. Ph.D. dissertation, Cornell University (2002)
Davidson, I., Ravi, S.S.: Agglomerative Hierarchical Clustering with Constraints: Theoretical and Empirical Results. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 59–70. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Abdala, D.D., Jiang, X. (2010). Fiber Segmentation Using Constrained Clustering. In: Zhang, D., Sonka, M. (eds) Medical Biometrics. ICMB 2010. Lecture Notes in Computer Science, vol 6165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13923-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-13923-9_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13922-2
Online ISBN: 978-3-642-13923-9
eBook Packages: Computer ScienceComputer Science (R0)