Skip to main content

Advances in Detecting Parkinson’s Disease

  • Conference paper
Medical Biometrics (ICMB 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6165))

Included in the following conference series:

Abstract

Diagnosing disordered subjects is of considerable importance in medical biometrics. In this study, aimed to provide medical decision boundaries for detecting Parkinson’s disease (PD), we combine genetic programming and the expectation maximization algorithm (GP-EM) to create learning feature functions on the basis of ordinary feature data (features of voice). Via EM, the transformed data are modeled as a Gaussians mixture, so that the learning processes with GP are evolved to fit the data into the modular structure, thus enabling the efficient observation of class boundaries to separate healthy subjects from those with PD. The experimental results show that the proposed biometric detector is comparable to other medical decision algorithms existing in the literature and demonstrates the effectiveness and computational efficiency of the mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eeden, S.K.V.D., Tanner, C.M., Bernstein, A.L., Fross, R.D., Leimpeter, A., Bloch, D.A., Nelson, L.M.: Incidence of Parkinson’s disease: Variation by age, gender, and race/ethnicity. Amer. J. Epidemiol. 157, 1015–1022 (2003)

    Article  Google Scholar 

  2. Rahn, D.A., Chou, M., Jiang, J.J., Zhang, Y.: Phonatory impairment in Parkinson’s disease: Evidence from nonlinear dynamic analysis and perturbation analysis. J. Voice 21, 64–71 (2007)

    Article  Google Scholar 

  3. Cnockaert, L., Schoentgen, J., Auzou, P., Ozsancak, C., Defebvre, L., Grenez, F.: Low-frequency vocal modulations in vowels produced by Parkinsonian subjects. Speech. Commun. 50, 288–300 (2008)

    Article  Google Scholar 

  4. Sapir, S., Spielman, J.L., Ramig, L.O., Story, B.H., Fox, C.: Effects of intensive voice treatment (the Lee Silverman voice treatment [LSVT]) on vowel articulation in dysarthric individuals with idiopathic Parkinson disease: Acoustic and perceptual findings. J. Speech. Lang. Hear. Res. 50, 899–912 (2007)

    Article  Google Scholar 

  5. Krawiec, K., Bhanu, B.: Visual learning by coevolutionary feature Synthesis. IEEE Trans. Syst., Man, Cybern. Part B 35, 405–425 (2005)

    Article  Google Scholar 

  6. Guo, H., Jack, L.B., Nandi, A.K.: Feature generation using genetic programming with application to fault classification. IEEE Trans. Syst., Man, Cybern., Part B 35, 89–99 (2005)

    Article  Google Scholar 

  7. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  8. Raymer, M.L., Doom, T.E., Kuhn, L.A., Punch, W.F.: Knowledge discovery in medical and biological datasets using a hybrid Bayes classifier/evolutionary algorithm. IEEE Trans. Syst., Man, Cybern., Part B 33, 802–813 (2003)

    Article  Google Scholar 

  9. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  10. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  11. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic, Boston (1990)

    MATH  Google Scholar 

  12. Blake, C., Keogh, E., Merz, C.J.: UCI repository of machine learning databases, Dept. Inform. Comput. Sci., Univ. California, Irvine (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

  13. Little, M.A., McSharry, P.E., Hunter, E.J., Spielman, J., Ramig, L.O.: Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE Trans. Biomed. Eng. 56, 1015–1022 (2009)

    Article  Google Scholar 

  14. Revett, K., Gorunescu, F., Salem, A.M.: Feature selection in Parkinson’s disease: a rough sets approach. In: Proc. Int. Multiconference on Comput. Science and Information Technology, Mragowo, Poland, pp. 425–428 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, PF., Bhattacharya, P., Kharma, N. (2010). Advances in Detecting Parkinson’s Disease. In: Zhang, D., Sonka, M. (eds) Medical Biometrics. ICMB 2010. Lecture Notes in Computer Science, vol 6165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13923-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13923-9_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13922-2

  • Online ISBN: 978-3-642-13923-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics