Skip to main content

Introduction to Fuzzy and Possibilistic Optimization

  • Chapter
Fuzzy Optimization

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 254))

Introduction

Deterministic optimization is a normative process which extracts the best from a set of options, usually under constraints. It is arguably true that optimization is one of the most used areas of mathematical applications. It is the thesis of this book that applied mathematical programming problems should be solved predominantly by using a fuzzy and possibilistic approaches. Rommelfanger ([42], p. 295), states that the only operations research methods that is widely applied is linear programming. He goes on to state that even though this is true, of the 167 production (linear) programming systems investigated and surveyed by Fandel [18], only 13 of these were ”purely” (my interpretation) linear programming systems. Thus, Rommelfanger concludes that even with this most highly used and applied operations research method, there is a discrepancy between classical linear programming and what is applied. Deterministic and stochastic optimization models require well-defined input parameters (coefficients, right-hand side values), relationships (inequalities, equalities), and preferences (real valued functions to maximize, minimize) either as real numbers or real valued distribution functions. Any large scale model requires significant data gathering efforts. If the model has projections of future values, it is clear that real numbers and real valued distributions are inadequate representations of parameters, even assuming that the model correctly captures the underlying system. It is also known from mathematical programming theory that only a few of the variables and constraints are necessary to describe an optimal solution (basic variables and active constraints), assuming a correct deterministic normative criterion (objective function). The ratio of variables that are basic and constraints that are active compared to the total becomes smaller, in general, as the model increases in size since in general large-scale models tend to become more sparse. Thus, only a few parameters need to be obtained precisely. Of course the problem is that it is not known a priori which variables will be basic and which constraints will be active.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Management Science, Serial B 17, 141–164 (1970)

    MathSciNet  Google Scholar 

  2. Birge, J.R., Louveux, F.: Introduction to Stochastic Programming. Springer, New York (1997)

    MATH  Google Scholar 

  3. Buckley, J.J.: Solving possibilistic linear programming problems. Fuzzy Sets and Systems 31, 329–341 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. de Cooman, G.: Possibility theory I: The measure- and integral - theoretic groundwork. International Journal of General Systems 25(4), 291–323 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Delgado, M., Verdegay, J.L., Vila, M.A.: A general model for fuzzy linear programming. Fuzzy Sets and Systems 29, 21–29 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics 38, 325–339 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dubois, D.: Linear programming with fuzzy data. In: Bezdek, J. (ed.) Analysis of Fuzzy Information. Applications in Engineering and Science, vol. III, pp. 241–263. CRC Press, Boca Raton (1897)

    Google Scholar 

  8. Dubois, D.: Personal communications (2008, 2009)

    Google Scholar 

  9. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  10. Dubois, D., Prade, H.: The mean value of a fuzzy number. Fuzzy Sets and Systems 24, 279–300 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)

    MATH  Google Scholar 

  12. Dubois, D., Prade, H.: The three semantics of fuzzy sets. Fuzzy Sets and Systems 90, 141–150 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dubois, D., Prade, H. (eds.): Fundamentals of Fuzzy Sets. Kluwer Academic Press, Dordrecht (2000)

    MATH  Google Scholar 

  14. Dubois, D., Prade, H.: Formal representations of uncertainty. In: IFSA 2009, Lisboa, Portugal (July 2009)

    Google Scholar 

  15. Dubois, D., Karre, E., Mesiar, R., Prade, H.: Fuzzy interval analysis. In: Dubois, D., Prade, H. (eds.) Fundamentals of Fuzzy Sets, ch. 10, pp. 483–581. Kluwer Academic Press, Dordrecht (2000)

    Google Scholar 

  16. Dubois, D., Nguyen, H., Prade, H.: Possibility theory, probability theory, and fuzzy sets: Misunderstanding, bridges and gaps. In: Dubois, D., Prade, H. (eds.) Fundamentals of Fuzzy Sets, ch. 7, pp. 343–438. Kluwer Academic Press, Dordrecht (2000)

    Google Scholar 

  17. Dubois, D., Prade, H., Sabbadin, R.: Decision-theoretic foundations of qualitative possibility theory. European Journal of Operational Research 128, 459–478 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fandel, G.: PPS-Systeme: Grundlagen, Methoden, Software, Markanalyse. Springer, Heidelberg (1994)

    Google Scholar 

  19. Fishburn, P.C.: Stochastic dominance and moments of distributions. Mathematics of Operations Research 5, 94–100 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gay, D.M.: Solving interval linear equations. SIAM Journal of Numerical Analysis 19(4), 858–870 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  21. Greenberg, H.: Personal communication (2005)

    Google Scholar 

  22. Inuiguchi, M.: Stochastic programming problems versus fuzzy mathematical programming problems. Japanese Journal of Fuzzy Theory and Systems 4(1), 97–109 (1992)

    MATH  MathSciNet  Google Scholar 

  23. Inuiguchi, M., Ichihashi, H., Kume, Y.: Relationships between modality constrained programming problems and various fuzzy mathematical programming problems. Fuzzy Sets and Systems 49, 243–259 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. Inuiguchi, M., Sakawa, M., Kume, Y.: The usefulness of possibilistic programming in production planning problems. Int. J. of Production Economics 33, 49–52 (1994)

    Google Scholar 

  25. Inuiguchi, M., Tanino, T.: Two-stage linear recourse problems under non-probabilistic uncertainty. In: Yoshida, Y. (ed.) Dynamical Aspect in Fuzzy Decision Making, pp. 117–140. Physica-Verlag, Heidelberg (2001)

    Google Scholar 

  26. Jamison, K.D.: Modeling uncertainty using probability based possibility theory with applications to optimization. Ph.D. Thesis, UCD Department of Mathematics (1998)

    Google Scholar 

  27. Jamison, K.D., Lodwick, W.A.: Fuzzy linear programming using penalty method. Fuzzy Sets and Systems 119, 97–110 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Jamison, K.D., Lodwick, W.A.: The construction of consistent possibility and necessity measures. Fuzzy Sets and Systems 132, 1–10 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kaymak, U., Sousa, J.M.: Weighting of constraints in fuzzy optimization. Constraints 8, 61–78 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, New Jersey (1995)

    MATH  Google Scholar 

  31. Lodwick, W., Bachman, K.: Solving Large Scale Fuzzy Possibilistic Optimization Problems. Fuzzy Optimization and Decision Making 4(4), 257–278 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lodwick, W.A., Jamison, K.D.: A computational method for fuzzy optimization. In: Ayyub, B., Gupta, M. (eds.) Uncertainty Analysis in Engineering and Sciences: Fuzzy Logic, Statistics, and Neural Network Approach, ch. 19. Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

  33. Lodwick, W.A., Jamison, K.D.: Estimating and validating the cumulative distribution of a function of random variables: Toward the development of distribution arithmetic. Reliable Computing 9, 127–141 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lodwick, W.A., Jamison, K.D.: Theory and semantics for fuzzy and possibilistic optimization. In: Fuzzy Logic, Soft Computing and Computational Intelligence (Eleventh International Fuzzy Systems Association World Congress), Beijing, China, July 28-31, vol. III, pp. 1805–1810 (2005)

    Google Scholar 

  35. Lodwick, W.A., Jamison, K.D.: Theory and semantics for fuzzy and possibilistic optimization. Fuzzy Sets and Systems 158(7), 1861–1871 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lodwick, W.A., Jamison, K.D.: The Use of interval-valued probability measure in optimization under uncertainty for problems containing a mixture of possibilistic, probabilistic and interval uncertainty. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS (LNAI), vol. 4529, pp. 361–370. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  37. Lodwick, W.A., Jamison, K.D.: Interval-Valued Probability in the Analysis of Problems Containing a Mixture of Possibilistic, Probabilistic, and Interval Uncertainty. Fuzzy Sets and Systems 159(1), 2845–2858 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  38. Lodwick, W.A., Neumaier, A., Newman, F.D.: Optimization under uncertainty: methods and applications in radiation therapy. In: Proceedings 10th IEEE International Conference on Fuzzy Systems, vol. 3, pp. 1219–1222 (2001)

    Google Scholar 

  39. Luhandjula, M.K.: On possibilistic linear programming. Fuzzy Sets and Systems 18, 15–30 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  40. Neumaier, A.: Fuzzy modeling in terms of surprise. Fuzzy Sets and Systems 135(1), 21–38 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  41. Puri, M.L., Ralescu, D.: Fuzzy measures are not possibility measures. Fuzzy Sets and Systems 7, 311–313 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  42. Rommelfanger, H.J.: The advantages of fuzzy optimization models in practical use. Fuzzy Optimization and Decision Making 3, 295–309 (2004)

    Article  MATH  Google Scholar 

  43. Rommelfanger, H.J.: Personal communication (April 2009)

    Google Scholar 

  44. Russell, B.: Vagueness. Australasian Journal of Psychology and Philosophy 1, 84–92 (1923)

    Article  Google Scholar 

  45. Shafer, G.: Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  46. Simon, H.: The Sciences of the Artificial, 2nd edn. The MIT Press, Cambridge (1969/1981)

    Google Scholar 

  47. Tanaka, H., Asai, K.: Fuzzy linear programming with fuzzy numbers. Fuzzy Sets and Systems 13, 1–10 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  48. Tanaka, H., Okuda, T., Asai, K.: On fuzzy mathematical programming. Transactions of the Society of Instrument and Control Engineers 9(5), 607–613 (1973) (in Japanese)

    Google Scholar 

  49. Tanaka, H., Okuda, T., Asai, K.: On fuzzy mathematical programming. J. of Cybernetics 3, 37–46 (1974)

    Article  MathSciNet  Google Scholar 

  50. Tanaka, H., Ichihashi, H., Asai, K.: Fuzzy Decision in linear programming with trapezoid fuzzy parameters. In: Kacpryzk, J., Yager, R.R. (eds.) Management Decision Support Systems Using Fuzzy Sets and Possibility Theory, pp. 146–154. Verlag TUV, Koln (1985)

    Google Scholar 

  51. Verdegay, J.L.: Fuzzy mathematical programming. In: Gupta, M.M., Sanchez, E. (eds.) Fuzzy Information and Decision Processes, pp. 231–237. North Holland Company, Amsterdam (1982)

    Google Scholar 

  52. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1947)

    Google Scholar 

  53. Yager, R.: On choosing between fuzzy subsets. Kybernetes 9, 151–154 (1980)

    Article  MATH  Google Scholar 

  54. Yager, R.: A procedure for ordering fuzzy subsets of the unit interval. Information Sciences 24, 143–161 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  55. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1, 3–28 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  56. Zimmermann, H.: Description and optimization of fuzzy systems. International J. of General Systems 2, 209–215 (1976)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lodwick, W.A., Untiedt, E. (2010). Introduction to Fuzzy and Possibilistic Optimization. In: Lodwick, W.A., Kacprzyk, J. (eds) Fuzzy Optimization. Studies in Fuzziness and Soft Computing, vol 254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13935-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13935-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13934-5

  • Online ISBN: 978-3-642-13935-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics