Skip to main content

On Index Sets of Some Properties of Computable Algebras

  • Conference paper
Programs, Proofs, Processes (CiE 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6158))

Included in the following conference series:

  • 800 Accesses

Abstract

We study the index sets of the following properties of computable algebras: to have no nontrivial congruences, to have a finite number of congruences, to have infinite decreasing or increasing chains of congruence relations. We prove completeness of these index sets in arithmetic and hyperarithmetic hierarchies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Grätzer, G., Schmidt, E.T.: Characterizations of congruence lattices of abstract algebras. Acta Sci. Math. (Szeged) 24 (1963)

    Google Scholar 

  2. Lampe, W.: The independence of certain related structures of a universal algebra. IV. The triple is independent. Algebra Universalis 2, 296–302 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  3. Lampe, W.: Results and problems on congruence lattice representations. Special issue dedicated to Walter Taylor. Algebra Universalis 55(2-3), 127–135 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Kjos-Hanssen, B., Brodhead, P.: The strength of the Grätzer-Schmidt theorem. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009. LNCS, vol. 5635, pp. 59–67. Springer, Heidelberg (2009)

    Google Scholar 

  5. Morozov, A.S.: Groups of computable automorphisms. In: Handbook of recursive mathematics, Part 1. Stud. Logic Found. Math., vol. 138, pp. 311–345. North-Holland, Amsterdam (1998)

    Chapter  Google Scholar 

  6. Soare, R.I.: Recursively enumerable sets and degrees. In: A Study of Computable Functions and Computably Generated Sets. Perspectives in Mathematical Logic. Springer, Berlin (1987)

    Google Scholar 

  7. Rogers, H.: Theory of recursive functions and effective computability. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  8. Handbook of recursive mathematics. In: Ershov, Y.L., Goncharov, S.S., Nerode, A., Remmel, J.B., Marek, V.W. (eds.) Recursive model theory, Part 1. Studies in Logic and the Foundations of Mathematics, vol. 138. North-Holland, Amsterdam (1998)

    Google Scholar 

  9. Handbook of recursive mathematics. In: Ershov, Y.L., Goncharov, S.S., Nerode, A., Remmel, J.B., Marek, V.W. (eds.) Recursive algebra, analysis and combinatorics. Studies in Logic and the Foundations of Mathematics, vol. 2, 139. North-Holland, Amsterdam (1998)

    Google Scholar 

  10. Ershov, Y.L., Goncharov, S.S.: Constructive models. In: Siberian School of Algebra and Logic. Consultants Bureau, New York (2000)

    Google Scholar 

  11. Grätzer, G.: Universal algebra, 2nd edn. Springer, New York (1979)

    MATH  Google Scholar 

  12. Kargapolov, M.I., Merzlyakov, Y.I.: Fundamentals of the theory of groups. Springer, Heidelberg (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khoussainov, B., Morozov, A. (2010). On Index Sets of Some Properties of Computable Algebras. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds) Programs, Proofs, Processes. CiE 2010. Lecture Notes in Computer Science, vol 6158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13962-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13962-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13961-1

  • Online ISBN: 978-3-642-13962-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics