Abstract
The notion of computability is stable (i.e. independent of the choice of an indexing) over infinite-dimensional vector spaces provided they have a finite “tensorial dimension”. Such vector spaces with a finite tensorial dimension permit to define an absolute notion of completeness for quantum computation models and give a precise meaning to the Church-Turing thesis in the framework of quantum theory.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Altenkirch, T., Grattage, J., Vizzotto, J.K., Sabry, A.: An algebra of pure quantum programming. In: Third International Workshop on Quantum Programming Languages. ENTCS, vol. 170C, pp. 23–47 (2007)
Arrighi, P., Dowek, G.: Linear-algebraic lambda-calculus: higher-order, encodings and confluence. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 17–31. Springer, Heidelberg (2008)
Arrighi, P., Dowek, G.: On the completeness of quantum computation models. Long version of this paper, available as an ArXiv preprint (2010)
Arrighi, P., Grattage, J.: Intrinsically universal n-dimensional quantum cellular automata. ArXiv preprint: arXiv:0907.3827 (2009)
Arrighi, P., Nesme, V., Werner, R.: Unitarity plus causality implies localizability. QIP 2010, ArXiv preprint: arXiv:0711.3975 (2007)
Bernstein, E., Vazirani, U.: Quantum complexity theory. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, pp. 11–20. ACM, New York (1993)
Boker, U., Dershowitz, N.: The church-turing thesis over arbitrary domains. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 199–229. Springer, Heidelberg (2008)
Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934-1990) 400(1818), 97–117 (1985)
Montague, R.: Towards a general theory of computability. Synthese 12(4), 429–438 (1960)
Nielsen, M.A.: Computable functions, quantum measurements, and quantum dynamics. Phys. Rev. Lett. 79(15), 2915–2918 (1997)
Odifreddi, P.: Classical Recursion Theory. North-Holland, Amsterdam (1988)
Perdrix, S.: Partial observation of quantum Turing machine and weaker wellformedness condition. In: Proceedings of Joint Quantum Physics and Logic & Development of Computational Models (Joint 5th QPL and 4th DCM) (2008)
Rabin, M.O.: Computable algebra, general theory and theory of computable fields. Transactions of the American Mathematical Society 95(2), 341–360 (1960)
Rogers, H.: Theory of Recursive Functions and Effective Computability. MIT Press, Cambridge (1967)
Schumacher, B., Werner, R.: Reversible quantum cellular automata. ArXiv pre-print quant-ph/0405174 (2004)
Selinger, P.: Towards a quantum programming language. Mathematical Structures in Computer Science 14(4), 527–586 (2004)
Selinger, P., Valiron, B.: A lambda calculus for quantum computation with classical control. Mathematical Structures in Computer Science 16(3), 527–552 (2006)
Stoltenberg-Hansen, V., Tucker, J.V.: Effective algebras, pp. 357–526. Oxford University Press, Oxford (1995)
Tucker, J.V., Zucker, J.I.: Abstract versus concrete computability: The case of countable algebras. In: Stoltenberg-Hansen, V., Väänänen, J. (eds.) Logic Colloquium 2003. Lecture Notes in Logic, vol. 24, pp. 377–408 (2006)
Van Tonder, A.: A lambda calculus for quantum computation, arXiv:quant-ph/0307150 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Arrighi, P., Dowek, G. (2010). On the Completeness of Quantum Computation Models. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds) Programs, Proofs, Processes. CiE 2010. Lecture Notes in Computer Science, vol 6158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13962-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-13962-8_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13961-1
Online ISBN: 978-3-642-13962-8
eBook Packages: Computer ScienceComputer Science (R0)