Skip to main content

On the Completeness of Quantum Computation Models

  • Conference paper
Programs, Proofs, Processes (CiE 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6158))

Included in the following conference series:

Abstract

The notion of computability is stable (i.e. independent of the choice of an indexing) over infinite-dimensional vector spaces provided they have a finite “tensorial dimension”. Such vector spaces with a finite tensorial dimension permit to define an absolute notion of completeness for quantum computation models and give a precise meaning to the Church-Turing thesis in the framework of quantum theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Altenkirch, T., Grattage, J., Vizzotto, J.K., Sabry, A.: An algebra of pure quantum programming. In: Third International Workshop on Quantum Programming Languages. ENTCS, vol. 170C, pp. 23–47 (2007)

    Google Scholar 

  2. Arrighi, P., Dowek, G.: Linear-algebraic lambda-calculus: higher-order, encodings and confluence. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 17–31. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Arrighi, P., Dowek, G.: On the completeness of quantum computation models. Long version of this paper, available as an ArXiv preprint (2010)

    Google Scholar 

  4. Arrighi, P., Grattage, J.: Intrinsically universal n-dimensional quantum cellular automata. ArXiv preprint: arXiv:0907.3827 (2009)

    Google Scholar 

  5. Arrighi, P., Nesme, V., Werner, R.: Unitarity plus causality implies localizability. QIP 2010, ArXiv preprint: arXiv:0711.3975 (2007)

    Google Scholar 

  6. Bernstein, E., Vazirani, U.: Quantum complexity theory. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, pp. 11–20. ACM, New York (1993)

    Chapter  Google Scholar 

  7. Boker, U., Dershowitz, N.: The church-turing thesis over arbitrary domains. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 199–229. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934-1990) 400(1818), 97–117 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Montague, R.: Towards a general theory of computability. Synthese 12(4), 429–438 (1960)

    Article  MathSciNet  Google Scholar 

  10. Nielsen, M.A.: Computable functions, quantum measurements, and quantum dynamics. Phys. Rev. Lett. 79(15), 2915–2918 (1997)

    Article  Google Scholar 

  11. Odifreddi, P.: Classical Recursion Theory. North-Holland, Amsterdam (1988)

    Google Scholar 

  12. Perdrix, S.: Partial observation of quantum Turing machine and weaker wellformedness condition. In: Proceedings of Joint Quantum Physics and Logic & Development of Computational Models (Joint 5th QPL and 4th DCM) (2008)

    Google Scholar 

  13. Rabin, M.O.: Computable algebra, general theory and theory of computable fields. Transactions of the American Mathematical Society 95(2), 341–360 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rogers, H.: Theory of Recursive Functions and Effective Computability. MIT Press, Cambridge (1967)

    MATH  Google Scholar 

  15. Schumacher, B., Werner, R.: Reversible quantum cellular automata. ArXiv pre-print quant-ph/0405174 (2004)

    Google Scholar 

  16. Selinger, P.: Towards a quantum programming language. Mathematical Structures in Computer Science 14(4), 527–586 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Selinger, P., Valiron, B.: A lambda calculus for quantum computation with classical control. Mathematical Structures in Computer Science 16(3), 527–552 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Stoltenberg-Hansen, V., Tucker, J.V.: Effective algebras, pp. 357–526. Oxford University Press, Oxford (1995)

    Google Scholar 

  19. Tucker, J.V., Zucker, J.I.: Abstract versus concrete computability: The case of countable algebras. In: Stoltenberg-Hansen, V., Väänänen, J. (eds.) Logic Colloquium 2003. Lecture Notes in Logic, vol. 24, pp. 377–408 (2006)

    Google Scholar 

  20. Van Tonder, A.: A lambda calculus for quantum computation, arXiv:quant-ph/0307150 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arrighi, P., Dowek, G. (2010). On the Completeness of Quantum Computation Models. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds) Programs, Proofs, Processes. CiE 2010. Lecture Notes in Computer Science, vol 6158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13962-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13962-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13961-1

  • Online ISBN: 978-3-642-13962-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics