Abstract
This paper is an informal (and nonexhaustive) overview over some existing notions of proof nets for classical logic, and gives some hints why they might be considered to be unsatisfactory.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lambek, J., Scott, P.J.: Introduction to higher order categorical logic. In: Cambridge studies in advanced mathematics, vol. 7. Cambridge University Press, Cambridge (1986)
Girard, J.Y.: A new constructive logic: Classical logic. Math. Structures in Comp. Science 1, 255–296 (1991)
Straßburger, L.: On the axiomatisation of Boolean categories with and without medial. Theory and Applications of Categories 18(18), 536–601 (2007)
Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and Types. In: Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (1989)
Parigot, M.: λμ-calculus: An algorithmic interpretation of classical natural deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS (LNAI), vol. 624, pp. 190–201. Springer, Heidelberg (1992)
Thielecke, H.: Categorical Structure of Continuation Passing Style. PhD thesis, University of Edinburgh (1997)
Streicher, T., Reus, B.: Classical logic, continuation semantics and abstract machines. J. of Functional Programming 8(6), 543–572 (1998)
Selinger, P.: Control categories and duality: on the categorical semantics of the lambda-mu calculus. Math. Structures in Comp. Science 11, 207–260 (2001)
Laurent, O.: Polarized proof-nets and λμ-calculus. Theoretical Computer Science 290(1), 161–188 (2003)
Führmann, C., Pym, D.: Order-enriched categorical models of the classical sequent calculus. J. of Pure and Applied Algebra (2004) (to appear)
Lamarche, F., Straßburger, L.: Constructing free Boolean categories. In: LICS 2005, pp. 209–218 (2005)
McKinley, R.: Classical categories and deep inference. In: Structures and Deduction 2005 Satellite Workshop of ICALP 2005 (2005)
Lamarche, F.: Exploring the gap between linear and classical logic. Theory and Applications of Categories 18(18), 473–535 (2007)
Došen, K., Petrić, Z.: Proof-Theoretical Coherence. KCL Publ., London (2004)
Gentzen, G.: Untersuchungen über das logische Schließen. I. Mathematische Zeitschrift 39, 176–210 (1934)
Robinson, E.P.: Proof nets for classical logic. Journal of Logic and Computation 13, 777–797 (2003)
Danos, V., Regnier, L.: The structure of multiplicatives. Annals of Mathematical Logic 28, 181–203 (1989)
Buss, S.R.: The undecidability of k-provability. Annals of Pure and Applied Logic 53, 72–102 (1991)
Lamarche, F., Straßburger, L.: Naming proofs in classical propositional logic. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 246–261. Springer, Heidelberg (2005)
Andrews, P.B.: Refutations by matings. IEEE Transactions on Computers C-25, 801–807 (1976)
Bibel, W.: On matrices with connections. Journal of the ACM 28, 633–645 (1981)
Guglielmi, A., Straßburger, L.: Non-commutativity and MELL in the calculus of structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 54–68. Springer, Heidelberg (2001)
Brünnler, K., Tiu, A.F.: A local system for classical logic. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 347–361. Springer, Heidelberg (2001)
Straßburger, L.: From deep inference to proof nets via cut elimination. Journal of Logic and Computation (2009) (To appear)
Guglielmi, A., Gundersen, T.: Normalisation control in deep inference via atomic flows. Logical Methods in Computer Science 4(1-9), 1–36 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Straßburger, L. (2010). What Is the Problem with Proof Nets for Classical Logic?. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds) Programs, Proofs, Processes. CiE 2010. Lecture Notes in Computer Science, vol 6158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13962-8_45
Download citation
DOI: https://doi.org/10.1007/978-3-642-13962-8_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13961-1
Online ISBN: 978-3-642-13962-8
eBook Packages: Computer ScienceComputer Science (R0)