Abstract
A binary matrix has the Consecutive Ones Property (C1P) if its columns can be ordered in such a way that all 1s on each row are consecutive. Algorithmic issues of the C1P are central in computational molecular biology, in particular for physical mapping and ancestral genome reconstruction. In 1972, Tucker gave a characterization of matrices that have the C1P by a set of forbidden submatrices, and a substantial amount of research has been devoted to the problem of efficiently finding such a minimum size forbidden submatrix. This paper presents a new O(Δ3 m 2 (mΔ + n 3)) time algorithm for this particular task for a m ×n binary matrix with at most Δ 1-entries per row, thereby improving the O(Δ3 m 2(mn + n 3)) time algorithm of Dom et al. [17].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adam, Z., Turmel, M., Lemieux, C., Sankoff, D.: Common intervals and symmetric difference in a model-free phylogenomics, with an application to streptophyte evolution. J. Comput. Biol. 14, 436–445 (2007)
Alizadeh, F., Karp, R., Weisser, D., Zweig, G.: Physical mapping of chromosomes using unique probes. J. Comput. Biol. 2, 159–184 (1995)
Althaus, E., Canzar, S., Emmett, M.R., Karrenbauer, A., Marshall, A.G., Meyer-Baese, A., Zhang, H.: Computing h/d-exchange speeds of single residues from data of peptic fragments. In: ACM Press (ed.) SAC 2008, pp. 1273–1277 (2008)
Atkins, J.E., Boman, E.G., Hendrickson, B.: A spectral algorithm for seriation and the consecutive ones problem. SIAM J. Comput. 28(1), 297–310 (1998)
Atkins, J.E., Middendorf, M.: On physical mapping and the consecutive ones property for sparse matrices. Discrete Appl. Math. 71(13), 23–40 (1996)
Bartholdi, J.J., Orlin, J.B., Ratliff, H.D.: Cyclic scheduling via integer programs with circular ones. Oper. Res. 28(5), 1074–1085 (1980)
Bienstock, D.: On the complexity of testing for odd holes and induced odd paths. Discrete Math. 90(1), 85–92 (1991)
Blin, G., Rizzi, R., Vialette, S.: General framework for minimal conflicting set. Technical report, Université Paris Est, I.G.M (January 2010)
Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms. J. Comput. System Sci. 13, 335–379 (1976)
Chauve, C., Manǔch, J., Patterson, M.: On the gapped consecutive ones property. In: Proc. 5th European Conference on Combinatorics, Graph Theory and Applications (EuroComb), Bordeaux, France. Electronic Notes on Discrete Mathematics, vol. 34, pp. 121–125 (2009)
Chauve, C., Stephen, T., Haus, U.-U., You, V.: Minimal conflicting sets for the consecutive ones property in ancestral genome reconstruction. In: Ciccarelli, F.D., Miklós, I. (eds.) RECOMB-CG 2009. LNCS, vol. 5817, pp. 48–58. Springer, Heidelberg (2009)
Chauve, C., Tannier, É.: A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genome. PLoS Comput. Biol. 4, paper e1000234 (2008)
Christof, T., Jünger, M., Kececioglu, J., Mutzel, P., Reinelt, G.: A branch-and-cut approach to physical mapping of chromosome by unique end-probes. J. Comput. Biol. 4, 433–447 (1997)
Christof, T., Oswald, M., Reinelt, G.: Consecutive ones and a betweenness problem in computational biology. In: Bixby, R.E., Boyd, E.A., Ríos-Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol. 1412, pp. 213–228. Springer, Heidelberg (1998)
Conforti, M., Rao, M.R.: Structural properties and decomposition of linear balanced matrices. Mathematical Programming 55, 129–168 (1992)
Dom, M.: Algorithmic aspects of the consecutive-ones property. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 98, 27–59 (2009)
Dom, M., Guo, J., Niedermeier, R.: Approximation and fixed-parameter algorithms for consecutive ones submatrix problems. Journal of Computer and System Sciences, Press, Corrected Proof (2009)
Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific J. Math. 15(3), 835–855 (1965)
Habib, M., McConnell, R.M., Paul, C., Viennot, L.: Lex-bfs and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theoret. Comput. Sci. 234(12), 59–84 (2000)
Hajiaghayi, M., Ganjali, Y.: A note on the consecutive ones submatrix problem. Information Processing Letters 83(3), 163–166 (2002)
Hassin, R., Megiddo, N.: Approximation algorithms for hitting objects with straight lines. Discrete Applied Mathematics 30(1), 29–42 (1991)
Hochbaum, D.S., Levin, A.: Cyclical scheduling and multi-shift scheduling: Complexity and approximation algorithms. Discrete Optimization 3(4), 327–340 (2006)
Hsu, W.-L.: A simple test for the consecutive ones property. J. Algorithms 43(1), 1–16 (2002)
Hsu, W.-L., McConnell, R.M.: Pc trees and circular-ones arrangements. Theoret. Comput. Sci. 296(1), 99–116 (2003)
Korte, N., Mhring, R.H.: An incremental linear-time algorithm for recognizing interval graphs. SIAM J. Comput. 18(1), 68–81 (1989)
Kou, L.T.: Polynomial complete consecutive information retrieval problems. SIAM J. Comput. 6(1), 67–75 (1977)
Lu, W.-F., Hsu, W.-L.: A test for the consecutive ones property on noisy data – application to physical mapping and sequence assembly. J. Comput. Biol. 10, 709–735 (2003)
McConnell, R.M.: A certifying algorithm for the consecutive-ones property. In: ACM Press (ed.) 15th Annual ACMSIAM Symposium on Discrete Algorithms SODA 2004, pp. 768–777 (2004)
Mecke, S., Schbel, A., Wagner, D.: Station location complexity and approximation. In: 5th Workshop on Algorithmic Methods and Models for Optimization of Railways ATMOS 2005, Dagstuhl, Germany (2005)
Mecke, S., Wagner, D.: Solving geometric covering problems by data reduction. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 760–771. Springer, Heidelberg (2004)
Meidanis, J., Porto, O., Telles, G.P.: On the consecutive ones property. Discrete Appl. Math. 88, 325–354 (1998)
Oswald, M., Reinelt, G.: The simultaneous consecutive ones problem. Theoret. Comput. Sci. 410(2123), 1986–1992 (2009)
Ruf, N., Schbel, A.: Set covering with almost consecutive ones property. Discrete Optimization 1(2), 215–228 (2004)
Tan, J., Zhang, L.: The consecutive ones submatrix problem for sparse matrices. Algorithmica 48(3), 287–299 (2007)
Tucker, A.C.: A structure theorem for the consecutive 1s property. Journal of Combinatorial Theory. Series B 12, 153–162 (1972)
Veinott, A.F., Wagner, H.M.: Optimal capacity scheduling. Oper. Res. 10, 518–547 (1962)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Blin, G., Rizzi, R., Vialette, S. (2010). A Faster Algorithm for Finding Minimum Tucker Submatrices. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds) Programs, Proofs, Processes. CiE 2010. Lecture Notes in Computer Science, vol 6158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13962-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-13962-8_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13961-1
Online ISBN: 978-3-642-13962-8
eBook Packages: Computer ScienceComputer Science (R0)