Abstract
For real world oriented applications to easily use sensor data obtained frommultiple wireless sensor networks, a data management infrastructure is mandatory. The infrastructure design should be based on the philosophy of a novel framework beyond the relational data management for two reasons: First is the freshness of data. To keep sensor data fresh, an infrastructure should process data efficiently; this means conventional time consuming transaction processing methodology is inappropriate. Second is the diversity of functions. The primary purpose of sensor data applications is to detect events; unfortunately, relational operators contribute little toward this purpose. This chapter presents a framework that directly supports efficient processing and a variety of advanced functions. Stream processing is the key concept of the framework. Regarding the efficiency requirement, we present a multiple query optimization technique for query processing over data streams; we also present an efficient data archiving technique. To meet the functions requirement, we present several techniques on event detection, which include complex event processing, probabilistic reasoning, and continuous media integration.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang, J.H., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.B.: The design of the borealis stream processing engine. In: Proc. CIDR (2005)
Aberer, K., Hauswirth, M., Salehi, A.: A middleware for fast and flexible sensor network deployment. In: Proc. VLDB, pp. 1199–1202 (2006)
Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient pattern matching over event streams. In: Proc. ACM SIGMOD (2008)
Agrawal, P., Benjelloun, O., Sarma, A.D., Hayworth, C., Nabar, S., Sugihara, T., Widom, J.: Trio: A system for data, uncertainty, and lineage. In: Proc. of VLDB, pp. 1151–1154 (2006)
Arasu, A., Babu, S., Widom, J.: The cql continuous query language: Semantic foundations and query execution. VLDB Journal 15(2) (2006)
Arora, A., Ramnath, R., Ertin, E., Sinha, P., Bapat, S., Naik, V., Kulathumani, V., Zhang, H., Cao, H., Sridharan, M., Kumar, S., Seddon, N., Anderson, C., Herman, T., Trivedi, N., Zhang, C., Shah, R., Kulkarni, S., Aramugam, M., Wang, L.: Exscal: Elements of an extreme scale wireless sensor network. In: Proc. of IEEE RTCSA, pp. 102–108 (2005)
Avnur, R., Hellerstein, J.M.: Eddies: Continuously adaptive query processing. In: Proc. ACM SIGMOD, pp. 261–272 (2000)
Ayad, A.M., Naughton, J.F.: Static optimization of conjunctive queries with sliding windows over infinite streams. In: Proc. ACM SIGMOD, pp. 419–430 (2004)
Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker, M., Tatbul, N., Zdonik, S.: Monitoring streams – a new class of data management applictions. In: Proc. VLDB, pp. 215–226 (2002)
Chandrasekaran, S., Franklin, M.J.: Streaming queries over streaming data. In: Proc. VLDB, pp. 203–214 (2002)
Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for structured data. In: Proc. OSDI (2006)
Chen, J., DeWitt, D., Naughton, J.: Design and evaluation of alternative selection placement strategies in optimizing continuous queries. In: Proc. IEEE ICDE, pp. 345–356 (2002)
Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., Jacobsen, H.A., Puz, N., Weaver, D., Yerneni, R.: Pnuts: Yahoo! ’s hosted data serving platform. In: Proc. VLDB (2008)
Demers, A., Gehrke, J., Hong, M., Riedewald, M., White, W.: Towards expressive publish/subscribe systems. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 627–644. Springer, Heidelberg (2006)
Deshpande, A., Madden, S.: Mauvedb: Supporting model-based user views in database systems. In: Proc. ACM SIGMOD (2006)
Gedik, B., Liu, L.: Peercq: A decentralized and self-configuring peer-to-peer informaiton monitoring system. In: Proc. ICDCS, pp. 490–499 (2003)
Kadota, M., Aida, H., Nakazawa, J., Tokuda, H.: D-jenga: A parallel distributed bayesian inference mechanism on wireless sensor nodes. In: Proc. of International Conference on Networked Sensing Systems (2006)
Kanzaki, A., Hara, T., Ishi, Y., Wakamiya, N., Shimojo, S.: X-sensor: a sensor network testbed integrating multi-networks. In: Proc. of Int’l Workshop on Data Management for Information Explosion in Wireless Networks (DMIEW 2009), pp. 1082–1087 (2009)
Li, J., Tufte, K., Shkapenyuk, V., Papadimos, V., Johnson, T., Maier, D.: Out-of-order processing: A new architecture for high-performance stream systems, pp. 274–288 (2008)
Liu, L., Pu, C., Tang, W.: Continual queries for internet scale event-driven information delivery. IEEE TKDE 11(4), 610–628 (1999)
Madden, S., Franklin, M., Hellerstein, J., Hong, W.: The design of an acquisitional query processor for sensor networks. In: Proc. ACM SIGMOD, pp. 491–502 (2003)
Madden, S., Shah, M., Hellerstein, J., Raman, V.: Continuously adaptive continuous queries over streams. In: Proc. ACM SIGMOD, pp. 49–60 (2002)
Maekawa, T., Yanagisawa, Y., Sakurai, Y., Kishino, Y., Kamei, K., Okadome, T.: Web searching for daily living. In: Proc. ACM SIGIR, pp. 27–34 (2009)
Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G.S., Olston, C., Rosenstein, J., Varma, R.: Query processing, resource management, and approximation in a data stream management system. In: Proc. CIDR (2003)
Ohki, K., Watanabe, Y., Kitagawa, H.: Evaluation of a framework for dynamic source selection in stream processing. In: Proc. International Workshop on Data Management for Information Explosion in Wireless Networks, DMIEW 2009 (2009)
Roy, P., Seshadri, S., Sudarshan, S., Bhobe, S.: Efficient and extensible algorithms for multi query optimization. In: Proc. ACM SIGMOD, pp. 249–260 (2000)
Salton, G.: Automatic Information Organization and Retrieval. McGraw-Hill Book Company, New York (1968)
Sato, R., Kawashima, H., Kitagawa, H.: The integration of data streams with probabilities and a relational database using bayesian networks. In: Proc. of IEEE International Workshop on Sensor Network Technologies for Information Explosion Era, SeNTIE (2008)
Sellis, T.: Multiple-query optimization. ACM TODS 13(1), 23–52 (1988)
Shen, Z., Kawashima, H., Kitagawa, H.: Efficient probabilistic event stream processing with lineage and kleene-plus. International Journal of Communication Networks and Distributed Systems 2(4), 355–374 (2009)
Stonebraker, M., Çetintemel, U.: One size fits all: An idea whose time has come and gone. In: Proc. IEEE ICDE, pp. 2–11 (2005)
StreamSpinner Team: http://www.streamspinner.org
Terry, D., Goldberg, D., Nichols, D.: Continuous queries over append-only databases. In: Proc. ACM SIGMOD, pp. 321–330 (1992)
Tran, T., Sutton, C., Cocci, R., Nie, Y., Diao, Y., Shenoy, P.: Probabilistic inference over rfid streams in mobile environments. In: Proc. IEEE ICDE (2009)
Watanabe, Y., Akiyama, R., Ohki, K., Kitagawa, H.: A video stream management system for heterogeneous information integration environments. In: Proc. of 2nd International Conference on Ubiquitous Information Management and Communication, ICUIMC 2008 (2008)
Watanabe, Y., Kitagawa, H.: A multiple continuous query optimization method based on query execution pattern analysis. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS, vol. 2973, pp. 443–456. Springer, Heidelberg (2004)
Watanabe, Y., Kitagawa, H.: Query result caching for multiple event-driven continuous queries. Information Systems (2009) (to appear)
Watanabe, Y., Yamada, S., Kitagawa, H., Amagasa, T.: Integrating a stream processing engine and databases for persistent streaming data management. In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 414–423. Springer, Heidelberg (2007)
Wyss, C.M., Wyss, F.I.: Extending relational query optimization to dynamic schemas for information integration in multidatabases. In: Proc. ACM SIGMOD, pp. 473–484 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Kitagawa, H., Watanabe, Y., Kawashima, H., Amagasa, T. (2010). Stream-Based Real World Information Integration Framework. In: Hara, T., Zadorozhny, V.I., Buchmann, E. (eds) Wireless Sensor Network Technologies for the Information Explosion Era. Studies in Computational Intelligence, vol 278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13965-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-13965-9_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13964-2
Online ISBN: 978-3-642-13965-9
eBook Packages: EngineeringEngineering (R0)