
ar
X

iv
:1

00
3.

26
97

v2
 [

m
at

h.
C

O
]

 2
7

A
pr

 2
01

0

Triangle-Free 2-Matchings Revisited

Maxim Babenko ⋆, Alexey Gusakov ⋆⋆, Ilya Razenshteyn ⋆ ⋆ ⋆

Moscow State University

Abstract. A 2-matching in an undirected graph G = (V G,EG) is a
function x : EG → {0, 1, 2} such that for each node v ∈ V G the sum of
values x(e) on all edges e incident to v does not exceed 2. The size of x
is the sum

∑

e x(e). If {e ∈ EG | x(e) 6= 0} contains no triangles then x

is called triangle-free.

Cornuéjols and Pulleyblank devised a combinatorial O(mn)-algorithm
that finds a triangle free 2-matching of maximum size (hereinafter n :=
|V G|, m := |EG|) and also established a min-max theorem.

We claim that this approach is, in fact, superfluous by demonstrating
how their results may be obtained directly from the Edmonds–Gallai
decomposition. Applying the algorithm of Micali and Vazirani we are
able to find a maximum triangle-free 2-matching in O(m

√
n)-time. Also

we give a short self-contained algorithmic proof of the min-max theorem.

Next, we consider the case of regular graphs. It is well-known that every
regular graph admits a perfect 2-matching. One can easily strengthen
this result and prove that every d-regular graph (for d ≥ 3) contains
a perfect triangle-free 2-matching. We give the following algorithms for
finding a perfect triangle-free 2-matching in a d-regular graph: an O(n)-
algorithm for d = 3, an O(m + n3/2)-algorithm for d = 2k (k ≥ 2), and
an O(n2)-algorithm for d = 2k + 1 (k ≥ 2).

1 Introduction

1.1 Basic Notation and Definitions

We shall use some standard graph-theoretic notation throughout the paper. For
an undirected graph G we denote its sets of nodes and edges by V G and EG,
respectively. For a directed graph we speak of arcs rather than edges and denote
the arc set of G by AG. A similar notation is used for paths, trees, and etc.
Unless stated otherwise, we do not allow loops and parallel edges or arcs in
graphs. An undirected graph is called d-regular (or just regular if the value of
d is unimportant) if all degrees of its nodes are equal to d. A subgraph of G
induced by a subset U ⊆ V G is denoted by G[U].

⋆ Email: max@adde.math.msu.su. Supported by RFBR grant 09-01-00709-a.
⋆⋆ Email: agusakov@gmail.com

⋆ ⋆ ⋆ Email: ilyaraz@gmail.com

http://arxiv.org/abs/1003.2697v2

1.2 Triangle-Free 2-Matchings

Definition 1. Given an undirected graph G, a 2-matching in G is a function
x : EG → {0, 1, 2} such that for each node v ∈ V G the sum of values x(e) on all
edges e incident to v does not exceed 2.

A natural optimization problem is to find, given a graph G, a maximum 2-
matching x in G, that is, a 2-matching of maximum size ||x|| := ∑

e x(e). When
||x|| = |V G| we call x perfect.

If {e | x(e) = 1} partitions into a collection of node-disjoint circuits of odd
length then x is called basic. Applying a straightforward reduction one can easily
see that for each 2-matching there exists a basic 2-matching of the same or
larger size (see [CP80, Theorem 1.1]). From now on we shall only consider basic
2-matchings x.

One may think of a basic 2-matching x as a collection of node disjoint double
edges (each contributing 2 to ||x||) and odd length circuits (where each edge of
the latter contributes 1 to ||x||). See Fig. 1.2(a) for an example.

Computing the maximum size ν2(G) of a 2-matching in G reduces to finding
a maximum matching in an auxiliary bipartite graph obtained by splitting the
nodes of G. Therefore, the problem is solvable in O(m

√
n)-time with the help of

Hopcroft–Karp’s algorithm [HK73] (hereinafter n := |V G|,m := |EG|). A simple
min-max relation is known (see [Sch03, Th. 6.1.4] for an equivalent statement):

Theorem 1. ν2(G) := minU⊆V G (|V G|+ |U | − iso(G− U)).

Here ν2(G) is the maximum size of a 2-matching in G, G−U denotes the graph
obtained from G by removing nodes U (i.e. G[V G − U]) and iso(H) stands for
the number of isolated nodes in H . The reader may refer to [Sch03, Ch. 30] and
[LP86, Ch. 6] for a survey.

Let supp(x) denote {e ∈ EG | x(e) 6= 0}. The following refinement of 2-
matchings was studied by Cornuéjols and Pulleyblank [CP80] in connection with
the Hamilton cycle problem:

Definition 2. Call a 2-matching x triangle-free if supp(x) contains no triangle.

They investigated the problem of finding a maximum size triangle-free 2-
matching, devised a combinatorial algorithm, and gave an O(n3) estimate for
its running time. Their algorithm initially starts with x := 0 and then performs
a sequence of augmentation steps each aiming to increase ||x||. Totally, there
are O(n) steps and a more careful analysis easily shows that the step can be
implemented to run in O(m) time. Hence, in fact the running time of their
algorithm is O(mn).

The above algorithm also yields a min-max relation as a by-product. Denote
the maximum size of a triangle-free 2-matching in G by ν32(G).

Definition 3. A triangle cluster is a connected graph whose edges partition into
disjoint triangles such that any two triangles have at most one node in common
and if such a node exists, it is an articulation point of the cluster. (See Fig. 1.2(b)
for an example.)

Fig. 1. (a) A perfect basic 2-matching. (b) A triangle cluster.

Let cluster(H) be the number of the connected components ofH that are triangle
clusters.

Theorem 2. ν32(G) := minU⊆V G (|V G|+ |U | − cluster(G− U)).

One may notice a close similarity between Theorem 2 and Theorem 1.

1.3 Our Contribution

The goal of the present paper is to devise a faster algorithm for constructing a
maximum triangle-free 2-matching. We give a number of results that improve
the above-mentioned O(mn) time bound.

Firstly, let G be an arbitrary undirected graph. We claim that the direct
augmenting approach of Cornuéjols and Pulleyblank is, in fact, superfluous. In
Section 2 we show how one can compute a maximum triangle-free 2-matching
with the help of the Edmonds–Gallai decomposition [LP86, Sec. 3.2]. The re-
sulting algorithm runs in O(m

√
n) time (assuming that the maximum matching

in G is computed by the algorithm of Micali and Vazirani [MV80]). Also, this
approach directly yields Theorem 2.

Secondly, there are some well-known results on matchings in regular graphs.

Theorem 3. Every 3-regular bridgeless graph has a perfect matching.

Theorem 4. Every regular bipartite graph has a perfect matching.

The former theorem is usually credited to Petersen while the second one is an
easy consequence of Hall’s condition.

Theorem 5 (Cole, Ost, Schirra [COS01]). There exists a linear time algo-
rithm that finds a perfect matching in a regular bipartite graph.

Theorem 4 and Theorem 5 imply the following:

Corollary 1. Every regular graph has a perfect 2-matching. The latter 2-
matching can be found in linear time.

In Section 3 we consider the analogues of Corollary 1 with 2-matchings re-
placed by triangle-free 2-matchings. We prove that every d-regular graph (d ≥ 3)
has a perfect triangle-free 2-matching. This result gives a simple and natural
strengthening to the non-algorithmic part of Corollary 1.

As for the complexity of finding a perfect 2-matching in a d-regular graph it
turns out heavily depending on d. The ultimate goal is a linear time algorithm
but we are only able to fulfill this task for d = 3. The case of even d (d ≥ 4)
turns out reducible to d = 4, so the problem is solvable in O(m+ n3/2) time by
the use of the general algorithm (since m = O(n) for 4-regular graphs). The case
of odd d (d ≥ 5) is harder, we give an O(n2)-time algorithm, which improves the
general time bound of O(m

√
n) when m = ω

(
n3/2

)
.

2 General Graphs

2.1 Factor-Critical Graphs, Matchings, and Decompositions

We need several standard facts concerning maximum matchings (see [LP86,
Ch. 3] for a survey). For a graph G, let ν(G) denote the maximum size of a
matching in G and odd(H) be the number of connected components of H with
an odd number of vertices.

Theorem 6 (Tutte–Berge). ν(G) = minU⊆V G
1

2
(|V G|+ |U | − odd(G− U)).

Definition 4. A graph G is factor-critical if for any v ∈ V G, G− v admits a
perfect matching.

Theorem 7 (Edmonds–Gallai). Consider a graph G and put

D := {v ∈ V G | there exists a maximum size matching missing v} ,
A := {v ∈ V G | v is a neighbor of D} ,
C := V G− (A ∪D).

Then U := A achieves the minimum in the Tutte–Berge formula, and D is the
union of the odd connected components of G[V G− A]. Every connected compo-
nent of G[D] is factor-critical. Any maximum matching in G induces a perfect
matching in G[C] and a matching in G[V G−C] that matches all nodes of A to
distinct connected components of G[D].

We note that once a maximummatchingM inG is found, an Edmonds–Gallai
decomposition of G can be constructed in linear time by running a search for an
M -augmenting path. Most algorithms that find M yield this decomposition as a
by-product. Also, the above augmenting path search may be adapted to produce
an odd ear decomposition of every odd connected component of G[V G−A]:

Definition 5. An ear decomposition G0, G1, . . . , Gk = G of a graph G is a
sequence of graphs where G0 consists of a single node, and for each i = 0, . . . , k−
1, Gi+1 obtained from Gi by adding the edges and the intermediate nodes of an
ear. An ear of Gi is a path Pi in Gi+1 such that the only nodes of Pi belonging
to Gi are its (possibly coinciding) endpoints. An ear decomposition with all ears
having an odd number of edges is called odd.

The next statement is widely-known and, in fact, comprises a part of the
blossom-shrinking approach to constructing a maximum matching.

Lemma 1. Given an odd ear decomposition of a factor-critical graph G and a
node v ∈ V G one can construct in linear time a matching M in G that misses
exactly the node v.

Finally, we classify factor-critical graphs depending on the existence of a
perfect triangle-free 2-matching. The proof of the next lemma is implicit in
[CP83] and one can easily turn it into an algorithm:

Lemma 2. Each factor-critical graph G is either a triangle cluster or has a
perfect triangle-free 2-matching x. Moreover, if an odd ear decomposition of G is
known then these cases can be distinguished and x (if exists) can be constructed
in linear time.

2.2 The Algorithm

For the sake of completeness, we first establish an upper bound on the size of a
triangle-free 2-matching.

Lemma 3. For each U ⊆ V G, ν32 (G) ≤ |V G|+ |U | − cluster(G− U).

Proof.
Removing a single node from a graph G may decrease ν32(G) by at most 2.

Hence, ν32(G) ≤ ν32(G−U)+2|U |. Also, ν32(G−U) ≤ (|V G|− |U |)− cluster(G−
U) since every connected component of G − U that is a triangle cluster lacks
a perfect triangle-free 2-matching. Combining these inequalities, one gets the
desired result. �

The next theorem both gives an efficient algorithm a self-contained proof of the
min-max formula.

Theorem 8. A maximum triangle-tree 2-matching can be found in O(m
√
n)

time.

Proof.
Construct an Edmonds–Gallai decomposition of G, call it (D,A,C), and

consider odd ear decompositions of the connected components of G[D]. As in-
dicated earlier, the complexity of this step is dominated by finding a maximum
matching M in G. The latter can be done in O(m

√
n) time (see [MV80]).

The matching M induces a perfect matching MC in G[C]. We turn MC into
double edges in the desired triangle-free 2-matching x by putting x(e) := 2 for
each e ∈ MC .

Next, we build a bipartite graph H . The nodes in the upper part of H
correspond to the components of G[D], the nodes in the lower part of H are just
the nodes of A. There is an edge between a component C and a node v in H
if and only if there is at least one edge between C and v in G. Let us call the
components that are triangle clusters bad and the others good. Consider another

bipartite graph H ′ formed from H by dropping all nodes (in the upper part)
corresponding to good components.

The algorithm finds a maximum matching MH′ in H ′ and then augments
it to a maximum matching MH in H . This is done in O(m

√
n) time using

Hopcroft–Karp algorithm [HK73]. It is well-known that an augmentation can
only increase the set of matched nodes, hence every bad component matched by
MH′ is also matched by MH and vice versa. From the properties of Edmonds–
Gallai decomposition it follows that MH matches all nodes in A.

Each edge e ∈ MH corresponds to an edge ẽ ∈ EG, we put x(ẽ) := 2.

Finally, we deal with the components of G[D]. Let C be a component that is
matched (in MH) by, say, an edge eC ∈ MH . As earlier, let ẽC be the preimage of
eC in G. Since C is factor-critical, there exists a matching MC in C that misses
exactly the node in C covered by ẽC . We find MC in linear time (see Lemma 1)
and put x(e) := 2 for each e ∈ MC .

As for the unmatched components, we consider good and bad ones separately.
If an unmatched component C is good, we apply Lemma 2 to find (in linear time)
and add to x a perfect triangle-free 2-matching in C. If C is bad, we employ
Lemma 1 and find (in linear time) a matching MC in C that covers all the nodes
expect for an arbitrary chosen one and set x(e) := 2 for each e ∈ MC .

The running time of the above procedure is dominated by constructing
the Edmonds–Gallai decomposition of G and finding matchings MH′ and MH .
Clearly, it is O(m

√
n).

It remains to prove that x is a maximum triangle-free 2-matching. Let nbad

be the number of bad components in G[D]. Among these components, let kbad
be matched by MH′ (and, hence, by MH). Then ||x|| = |V G| − (nbad − kbad).
From König–Egervary theorem (see, e.g., [LP86]) there exists a vertex cover L
in H ′ of cardinality kbad (i.e. a subset L ⊆ V H ′ such that each edge in H ′ is
incident to at least one node in L). Put L = LA∪LD, where LA are the nodes of
L belonging to the lower part of H and LD are the nodes from the upper part.
The graph G − LA contains at least nbad − |LD| components that are triangle
clusters. (They correspond to the uncovered nodes in the upper part of H ′.
Indeed, these components are only connected to LA in the lower part.) Hence,
putting U := LA in Lemma 3 one gets ν32(G) ≤ |V G| + |LA| − (nbad − |LD|) =
|V G| + |L| − nbad = |V G| − (nbad − kbad) = ||x||. Therefore, x is a maximum
triangle-free 2-matching, as claimed. �

3 Regular Graphs

3.1 Existence of a Perfect Triangle-Free 2-Matching

Theorem 9. Let G be a graph with n − q nodes of degree d and q nodes of
degree d − 1 (d ≥ 3). Then, there exists a triangle-free 2-matching in G of size
at least n− q/d.

Proof.
Consider an arbitrary subset U ⊆ V G. Put t := cluster(G − U) and let

C1, . . . , Ct be the triangle cluster components of G − U . Fix an arbitrary
component H := Ci and let k be the number of triangles in H . One has
|V H | = 2k + 1. Each node of H is incident to either d or d − 1 edges. Let
qi denote the number of nodes of degree d− 1 in H . Since |EH | = 3k it follows
that (2k+1)d− 6k− qi = d+(2d− 6)k− qi ≥ d− qi edges of G connect H to U .
Totally, the nodes in U have at least

∑t
i=1

(d − qi) ≥ td − q incident edges. On
the other hand, each node of U has the degree of at most d, hence td− q ≤ |U |d
therefore t − |U | ≤ q/d. By the min-max formula (see Theorem 2) this implies
the desired bound. �

Corollary 2. Every d-regular graph (d ≥ 3) has a perfect triangle-free 2-
matching.

3.2 Cubic graphs

For d = 3 we speed up the general algorithm ultimately as follows:

Theorem 10. A a perfect triangle-free 2-matching in a 3-regular graph can be
found in linear time.

Proof.
Consider a 3-regular graph G. First, we find an arbitrary inclusion-wise max-

imal collection of node-disjoint triangles ∆1, . . . , ∆k in G. This is done in linear
time by performing a local search at each node v ∈ V G. Next, we contract
∆1, . . . , ∆k into composite nodes z1, . . . , zk and obtain another 3-regular graph
G′ (note that G′ may contain multiple parallel edges).

Construct a bipartite graph H ′ from G′ as follows. Every node v ∈ V G′

is split into a pair of nodes v1 and v2. Every edge {u, v} ∈ EG′ generates
edges

{
u1, v2

}
and

{
v1, u2

}
in H ′. There is a natural surjective many-to-one

correspondence between perfect matchings in H ′ and perfect 2-matchings in G′.
Applying the algorithm of Cole, Ost and Schirra [COS01] to H ′ we construct a
perfect 2-matching x′ in G′ in linear time. As usual, we assume that x′ is basic,
in particular x′ contains no circuit of length 2 (i.e. supp(x′) contains no pair of
parallel edges).

Our final goal is to expand x′ into a perfect triangle-free 2-matching x in G.
The latter is done as follows. Consider an arbitrary composite node zi obtained
by contracting∆i in G. Suppose that a double edge e of x′ is incident to zi in G′.
We keep the preimage of e as a double edge of x and add another double edge
connecting the remaining pair of nodes in ∆i. See Fig. 3.2(a).

Next, suppose that x′ contains an odd-length circuit C′ passing through zi.
Then, we expand zi to ∆i and insert an additional pair of edges to C′. Note that
the length of the resulting circuit C is odd and is no less than 5. See Fig. 3.2(b).

Clearly, the resulting 2-matching x is perfect. But why is it triangle-free? For
sake of contradiction, suppose that ∆ is a triangle in supp(x). Then, ∆ is an

zi

∆i

(a)

zi

∆i

(b)

Fig. 2. Uncontraction of zi.

odd circuit in x′ and no node of ∆ is composite. Hence, ∆ is a triangle disjoint
from ∆1, . . . , ∆k — a contradiction. �

Combining the above connection between triangle-free 2-matchings in G and
2-matchings in G′ with the result of Voorhoeve [Voo79] one can prove the fol-
lowing:

Theorem 11. There exists a constant c > 1 such that every 3-regular graph G
contains at least cn perfect triangle-free 2-matchings.

3.3 Even-degree graphs

To find a perfect triangle-free 2-matching in a 2k-regular graph G (k ≥ 2) we re-
place it by a 4-regular spanning subgraph and then apply the general algorithm.

Lemma 4. For each 2k-regular (k ≥ 1) graph G there exists and can be found
in linear time a 2-regular spanning subgraph.

Proof.
Since the degrees of all nodes in G are even, EG decomposes into a collection

of edge-disjoint circuits. This decomposition takes linear time. For each circuit
C from the above decomposition we choose an arbitrary direction and traverse

C in this direction turning undirected edges into directed arcs. Let
−→
G denote

the resulting digraph. For each node v exactly k arcs of
−→
G enter v and exactly

k arcs leave v.
Next, we construct a bipartite graph H from

−→
G as follows: each node v ∈ −→

G

generates a pair of nodes v1, v2 ∈ V H , each arc (u, v) ∈ A
−→
G generates an

edge
{
u1, v2

}
∈ EH . The graph H is k-regular and, hence, contains a perfect

matching M (which, by Theorem 5, can be found in linear time). Each edge of

M corresponds to an arc of
−→
G and, therefore, to an edge of G. Clearly, the set

of the latter edges forms a 2-regular spanning subgraph of G. �

Theorem 12. A perfect triangle-free 2-matching in a d-regular graph (d = 2k,
k ≥ 2) can be found in O(m + n3/2) time.

Proof.
Consider an undirected 2k-regular graph G. Apply Lemma 4 and construct

find a 2-regular spanning subgraph H1 of G. Next, discard the edges of H1 and
reapply Lemma 4 thus obtaining another 2-regular spanning subgraph H2 (here
we use that k ≥ 2). Their union H := (V G,EH1 ∪EH2) is a 4-regular spanning
subgraph of G. By Corollary 2 graph H still contains a perfect triangle-free 2-
matching x, which can be found by the algorithm from Theorem 8. It takes O(m)
time to construct H and O(n3/2) time, totally O(m+n3/2) time, as claimed. �

3.4 Odd-degree graphs

The case d = 2k + 1 (k ≥ 2) is more involved. We extract a spanning subgraph
H of G whose node degrees are 3 and 4. A careful choice of H allows us to ensure
that the number of nodes of degree 3 is O(n/d). Then, by Theorem 9 subgraphH
contains a nearly-perfect triangle-free 2-matching. The latter is found and then
augmented to a perfect one with the help of the algorithm from [CP80]. More
details follow.

Lemma 5. There exists and can be found in linear time a spanning subgraph H
of graph G with nodes degrees equal to 3 and 4. Moreover, at most O(n/d) nodes
in H are of degree 3.

Proof.
Let us partition the nodes of G into pairs (in an arbitrary way) and add n/2

virtual edges connecting these pairs. The resulting graph G′ is 2k + 2-regular.
(Note that G′ may contain multiple parallel edges.)

Our task is find a 4-regular spanning subgraph H ′ of G′ containing at most
O(n/d) virtual edges. Once this subgraph is found, the auxiliary edges are
dropped creating O(n/d) nodes of degree 3 (recall that each node of G is in-
cident to exactly one virtual edge).

Subgraph H ′ is constructed by repeatedly pruning graph G′. During this
process graph G′ remains d′-regular for some even d′ (initially d′ := d+ 1).

At each pruning step we first examine d′. Two cases are possible. Suppose
d′ is divisible by 4, then a large step is executed. The graph G′ is decomposed
into a collection of edge-disjoint circuits. In each circuit, every second edge is
marked as red while others are marked as blue. This red-blue coloring partitions
G′ into a pair of spanning d′/2-regular subgraphs. We replace G′ by the one
containing the smallest number of virtual edges. The second case (which leads
to a small step) applies if d′ is not divisible by 4. Then, with the help of Lemma 4
a 2-regular spanning subgraph is found in G′. The edges of this subgraph are
removed from G′, so d′ decreases by 2.

The process stops when d′ reaches 4 yielding the desired subgraph H ′. To-
tally, there are O(log d) large (and hence also small) steps each taking time pro-
portional to the number of remaining edges. The latter decreases exponentially,
hence the total time to construct H ′ is linear.

It remains to bound the number of virtual edges in H ′. There are exactly
t := ⌊log2(d + 1)/4⌋ large steps performed by the algorithm. Each of the latter
decreases the number of virtual edges in the current subgraph by at least a
factor of 2. Hence, at the end there are O(n/2t) = O(n/d) virtual edges in H ′,
as required. �

Theorem 13. A perfect triangle-free 2-matching in a d-regular graph (d =
2k + 1, k ≥ 2) can be found in O(n2) time.

Proof.
We apply Lemma 5 and construct a subgraph H in O(m) time. Next, a max-

imum triangle-free 2-matching x is found in H , which takes O(|EH | · |V H |1/2) =
O(n3/2) time. By Theorem 9 the latter 2-matching obeys n − ||x|| = O(n/d).
To turn x into a perfect triangle-free 2-matching in G we apply the algorithm
from [CP80] and perform O(n/d) augmentation steps. Each step takes O(m)
time, so totally the desired perfect triangle-free 2-matching is constructed in
O(m+ n3/2 +mn/d) = O(n2) time. �

Acknowledgements

The authors are thankful to Andrew Stankevich for fruitful suggestions and
helpful discussions.

References

COS01. R. Cole, K. Ost, and S. Schirra. Edge-coloring bipartite multigraphs in
O(E logD) time. Combinatorica, Vol. 21:5–12, 2001.

CP80. G. Cornuéjols andW. R. Pulleyblank. Perfect triangle-free 2-matchings. Math-

ematical Programming Studies, Volume 13:1–7, 1980.
CP83. G. Cornuéjols and W. R. Pulleyblank. Critical graphs, matchings and tours or

a hierarchy of relaxations for the travelling salesman problem. Combinatorica,
3(1):35–52, 1983.

HK73. J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings
in bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

LP86. L. Lovász and M. D. Plummer. Matching Theory. Akadémiai Kiadó - North
Holland, Budapest, 1986.

MV80. S. Micali and V. Vazirani. An O(
√

|V | · |E|) algorithm for finding maximum
matching in general graphs. Proc. 21st IEEE Symp. Foundations of Computer

Science, pages 248–255, 1980.
Sch03. A. Schrijver. Combinatorial Optimization. Springer, Berlin, 2003.
Voo79. M. Voorhoeve. A lower bound for the permanents of certain (0, 1)-matrices.

Nederl. Akad. Wetensch. Indag. Math., 41(1):83–86, 1979.

	 Triangle-Free 2-Matchings Revisited
	 Maxim Babenko , Alexey Gusakov , Ilya Razenshteyn

