Skip to main content

Finding Maximum Edge Bicliques in Convex Bipartite Graphs

  • Conference paper
Computing and Combinatorics (COCOON 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6196))

Included in the following conference series:

Abstract

A bipartite graph G = (A, B, E) is convex on B if there exists an ordering of the vertices of B such that for any vertex v ∈ A, vertices adjacent to v are consecutive in B. A complete bipartite subgraph of a graph G is called a biclique of G. In this paper, we study the problem of finding the maximum edge-cardinality biclique in convex bipartite graphs. Given a bipartite graph G = (A, B, E) which is convex on B, we present a new algorithm that computes the maximum edge-cardinality biclique of G in O(n log3 n loglogn) time and O(n) space, where n = |A|. This improves the current O(n 2) time bound available for the problem.

Research supported by NSERC and SUN Microsystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alexe, G., Alexe, S., Crama, Y., Foldes, S., Hammer, P.L., Simeone, B.: Consensus algorithms for the generation of all maximal bicliques 145(1), 11–21 (2004)

    Google Scholar 

  2. Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene expression data: the order-preserving submatrix problem. J. Comput. Biol. 10(3-4), 373–384 (2003)

    Article  Google Scholar 

  3. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)

    MATH  MathSciNet  Google Scholar 

  4. Brodal, G., Georgiadis, L., Hansen, K., Katriel, I.: Dynamic matchings in convex bipartite graphs, pp. 406–417 (2007)

    Google Scholar 

  5. Chen, Y., Church, G.: Biclustering of expression data. In: Proc. 8th Internat. Conf. Intelligent Systems for Molecular Biology, pp. 93–103 (2000)

    Google Scholar 

  6. Dawande, M., Keskinocak, P., Swaminathan, J.M., Tayur, S.: On bipartite and multipartite clique problems  41(2), 388–403 (2001)

    Google Scholar 

  7. Dias, V.M., de Figueiredo, C.M., Szwarcfiter, J.L.: Generating bicliques of a graph in lexicographic order. Theoretical Comput. Sci. 337(1-3), 240–248 (2005)

    Article  MATH  Google Scholar 

  8. Dias, V.M., de Figueiredo, C.M., Szwarcfiter, J.L.: On the generation of bicliques of a graph  155(14), 1826–1832 (2007)

    Google Scholar 

  9. Feige, U.: Relations between average case complexity and approximation complexity, pp. 534–543 (2002)

    Google Scholar 

  10. Fries, O., Mehlhorn, K., Näher, S., Tsakalidis, A.: A loglogn data structure for three-sided range queries. Inf. Process. Lett. 25(4), 269–273 (1987)

    Article  MATH  Google Scholar 

  11. Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations. Springer, Berlin (1996)

    MATH  Google Scholar 

  12. Gély, A., Nourine, L., Sadi, B.: Enumeration aspects of maximal cliques and bicliques  157(7), 1447–1459 (2009)

    Google Scholar 

  13. Glover, F.: Maximum matching in a convex bipartite graph 14, 313–316 (1967)

    Google Scholar 

  14. Goerdt, A., Lanka, A.: An approximation hardness result for bipartite clique. In: Technical Report 48, Electronic Colloquium on Computation Complexity (2004)

    Google Scholar 

  15. Habib, M., McConnell, R., Paul, C., Viennot, L.: Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theoretical Comput. Sci. 234(1-2), 59–84 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kloks, T., Kratsch, D.: Computing a perfect edge without vertex elimination ordering of a chordal bipartite graph. Inf. Process. Lett. 55(1), 11–16 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Liang, Y.D., Chang, M.: Minimum feedback vertex sets in cocomparability graphs and convex bipartite graphs 34(5), 337–346 (1997)

    Google Scholar 

  18. Lipski, W., Preparata, F.P.: Efficient algorithms for finding maximum matchings in convex bipartite graphs and related problems 15(4), 329–346 (1981)

    Google Scholar 

  19. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: A survey  1(1), 24–45 (2004)

    Google Scholar 

  20. Meidanis, J., Porto, O., Telles, G.P.: On the consecutive ones property  88(1-3), 325–354 (1998)

    Google Scholar 

  21. Mishra, N., Ron, D., Swaminathan, R.: On finding large conjunctive clusters. In: Proc. 16th Annu. Conf. Computational Learning Theory, pp. 448–462 (2003)

    Google Scholar 

  22. Peeters, R.: The maximum edge biclique problem is NP-complete  131(3), 651–654 (2003)

    Google Scholar 

  23. Soares, J., Stefanes, M.: Algorithms for maximum independent set in convex bipartite graphs 53(1), 35–49 (2009)

    Google Scholar 

  24. Steiner, G., Yeomans, J.S.: A linear time algorithm for maximum matchings in convex, bipartite graphs. Comput. Math. Appl. 31(12), 91–96 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tan, J.: Inapproximability of maximum weighted edge biclique and its applications. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 282–293. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18(Supplement 1), S136–S144 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nussbaum, D., Pu, S., Sack, JR., Uno, T., Zarrabi-Zadeh, H. (2010). Finding Maximum Edge Bicliques in Convex Bipartite Graphs . In: Thai, M.T., Sahni, S. (eds) Computing and Combinatorics. COCOON 2010. Lecture Notes in Computer Science, vol 6196. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14031-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14031-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14030-3

  • Online ISBN: 978-3-642-14031-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics