Abstract
Let H be a graph with the chromatic number h and the chromatic surplus s. A connected graph G of order n is called H-good if R(G,H) = (n − 1)(h − 1) + s. We show that P n is 2K m -good for n ≥ 3. Furthermore, we obtain the Ramsey number R(L,2K m ), where L is a linear forest. In addition, we also give the Ramsey number R(L,H m ) which is an extension for R(kP n ,H m ) proposed by Ali et al. [1], where H m is a cocktail party graph on 2m vertices.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ali, K., Baig, A.Q., Baskoro, E.T.: On the Ramsey number for a linear forest versus a cocktail party graph. J. Combin. Math. Combin. Comput. 71, 173–177 (2009)
Baskoro, E.T., Hasmawati, Assiyatun, H.: The Ramsey number for disjoint unions of trees. Discrete Math. 306, 3297–3301 (2006)
Bielak, H.: Ramsey numbers for a disjoint of some graphs. Appl. Math. Lett. 22, 475–477 (2009)
Bondy, J.A.: Pancyclic graph. J. Combin. Theory Ser. B 11, 80–84 (1971)
Chvátal, V.: Tree complete graphs Ramsey number. J. Graph Theory 1, 93 (1977)
Burr, S.A.: Determining generalized Ramsey numbers is NP-hard. Ars Combin. 17, 21–25 (1984)
Gerencser, L., Gyarfas, A.: On Ramsey-Type problems, Annales Universitatis Scientiarum Budapestinensis. Eotvos Sect. Math. 10, 167–170 (1967)
Hasmawati, Baskoro, E.T., Assiyatun, H.: The Ramsey number for disjoint unions of graphs. Discrete Math. 308, 2046–2049 (2008)
Hasmawati, Assiyatun, H., Baskoro, E.T., Salman, A.N.M.: Ramsey numbers on a union of identical stars versus a small cycle. In: Ito, H., Kano, M., Katoh, N., Uno, Y. (eds.) KyotoCGGT 2007. LNCS, vol. 4535, pp. 85–89. Springer, Heidelberg (2008)
Radziszowski, S.P.: Small Ramsey numbers. Electronic J. Combin. DS1 12 (August 4, 2009), http://www.combinatorics.org
Schaefer, M.: Graph Ramsey theory and the polynomial hierarchy. J. Comput. Sys. Sci. 62, 290–322 (2001)
Sudarsana, I.W., Baskoro, E.T., Assiyatun, H., Uttunggadewa, S.: On the Ramsey numbers of certain forest respect to small wheels. J. Combin. Math. Combin. Comput. 71, 257–264 (2009)
Sudarsana, I.W., Baskoro, E.T., Assiyatun, H., Uttunggadewa, S., Yulianti, L.: The Ramsey number for the union of graphs containing at least one H-good component (Under revision for publication in Utilitas Math.)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sudarsana, I.W., Adiwijaya, Musdalifah, S. (2010). The Ramsey Number for a Linear Forest versus Two Identical Copies of Complete Graphs. In: Thai, M.T., Sahni, S. (eds) Computing and Combinatorics. COCOON 2010. Lecture Notes in Computer Science, vol 6196. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14031-0_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-14031-0_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14030-3
Online ISBN: 978-3-642-14031-0
eBook Packages: Computer ScienceComputer Science (R0)