Skip to main content

Near Optimal Solutions for Maximum Quasi-bicliques

  • Conference paper
Computing and Combinatorics (COCOON 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6196))

Included in the following conference series:

Abstract

The maximum quasi-biclique problem has been proposed for finding interacting protein group pairs from large protein-protein interaction (PPI) networks. The problem is defined as follows:

The Maximum Quasi-biclique Problem: Given a bipartite graph G = (X ∪ Y, E) and a number 0 < δ ≤ 0.5, find a subset X opt of X and a subset Y opt of Y such that any vertex x ∈ X opt is incident to at least (1 − δ)|Y opt | vertices in Y opt , any vertex y ∈ Y opt is incident to at least (1 − δ)|X opt | vertices in X opt and |X opt | + |Y opt | is maximized.

The problem was proved to be NP-hard  [2]. We design a polynomial time approximation scheme to give a quasi-biclique (X a , Y a ) for X a  ⊆ X and Y a  ⊆ Y with |X a | ≥ (1 − ε)|X opt | and |Y a | ≥ (1 − ε)|Y opt | such that any vertex x ∈ X a is incident to at least (1 − δ − ε)|Y a | vertices in Y a and any vertex y ∈ Y a is incident to at least (1 − δ − ε)|X A | vertices in X a for any ε> 0, where X opt and Y opt form the optimal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreopoulos, B., An, A., Wang, X., Faloutsos, M., Schroeder, M.: Clustering by common friends finds locally significant proteins mediating modules. Bioinformatics 23(9), 1124–1131 (2007)

    Google Scholar 

  2. Liu, X., Li, J., Wang, L.: Quasi-bicliques: Complexity and Binding Pairs. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 255–264. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Thomas, A., Cannings, R., Monk, N.A.M., Cannings, C.: On the structure of protein-protein interaction networks. Biochemical Society Transanctions 31(6), 1491–1496 (2003)

    Article  Google Scholar 

  4. Bu, D., Zhao, Y., Cai, L., Xue, H., Zhu, X., Lu, H., Zhang, J., Sun, S., Ling, L., Zhang, N., Li, G., Chen, R.: Topological structure analysis of the protein-protein interaction network in budding yeast. Nucleic Acids Research 31(9), 2443–2450 (2003)

    Article  Google Scholar 

  5. Hishigaki, H., Nakai, K., Ono, T., Tanigami, A., Takagi, T.: Assessment of prediction accuracy of protein function from protein-protein interaction data. Yeast 18(6), 523–531 (2001)

    Article  Google Scholar 

  6. Morrison, J.L., Breitling, R., Higham, D.J., Gilbert, D.R.: A lock-and-key model for protein-protein interactions. Bioinformatics 22(16), 2012–2019 (2006)

    Article  Google Scholar 

  7. Li, H., Li, J., Wong, L.: Discovering motif pairs at interaction sites from protein sequences on a proteome-wide scale. Bioinformatics 22(8), 989–996 (2006)

    Article  Google Scholar 

  8. Liu, X., Li, J., Wang, L.: Modeling Protein Interacting Groups by Quasi-bicliques: Complexity, Algorithm and Application. IEEE/ACM Trans. Comput. Biology Bioinform. (to appear)

    Google Scholar 

  9. Lonardia, S., Szpankowskib, W., Yang, Q.: Finding biclusters by random projections. Theoretical Computer Science 368, 271–280 (2006)

    Google Scholar 

  10. Li, M., Ma, B., Wang, L.: On the closest string and substring problems. Journal of the ACM 49(2), 157–171 (2002)

    Article  MathSciNet  Google Scholar 

  11. Arora, S., Karger, D., Karpinski, M.: Polynomial time approximation schemes for dense instances of NP-hard problems. In: Proceedings of the 27th Annual ACM Symposium on Theory of Computing, pp. 284–293. ACM, New York (1995)

    Google Scholar 

  12. Raghavan, P.: Probabilistic construction of deterministic algorithms: Approximate packing integer programs. JCSS 37(2), 130–143 (1988)

    MATH  MathSciNet  Google Scholar 

  13. Gillman, D.: A Chernoff bound for randomwalks on expanders. In: Proceedings of the 34th Annual Symposium on Foundations of Computer Science, pp. 680–691. IEEE Computer Society Press, Los Alamitos (1993)

    Google Scholar 

  14. Pietrokovski, S.: Searching databases of conserved sequence regions by aligning protein multiple-alignments. Nucleic Acids Research 24, 3836–3845 (1996)

    Article  Google Scholar 

  15. Finn, R.D., Marshall, M., Bateman, A.: iPfam: visualization of protein-protein interactions in PDB at domain and amino acid resolutions. Bioinformatics 21(3), 410–412 (2005)

    Article  Google Scholar 

  16. Gordeliy, V.I., Labahn, J., Moukhametzianov, R., Efremov, R., Granzin, J., Schlesinger, R., Büldt, G., Savopol, T., Scheidig, A.J., Klare, J.P., Engelhard, M.: Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419(6906), 484–487 (2002)

    Article  Google Scholar 

  17. Bergo, V.B., Spudich, E.N., Rothschild, K.J., Spudich, J.L.: Photoactivation perturbs the membrane-embedded contacts between sensory rhodopsin II and its transducer. Journal of Biological Chemistry 280(31), 28365–28369 (2005)

    Article  Google Scholar 

  18. Inoue, K., Sasaki, J., Spudich, J.L., Terazima, M.: Laser-induced transient grating analysis of dynamics of interaction between sensory rhodopsin II D75N and the HtrII transducer. Biophysical Journal 92(6), 2028–2040 (2007)

    Article  Google Scholar 

  19. Sudo, Y., Furutani, Y., Spudich, J.L., Kandori, H.: Early photocycle structural changes in a bacteriorhodopsin mutant engineered to transmit photosensory signals. Journal of Biological Chemistry 282(21), 15550–15558 (2007)

    Article  Google Scholar 

  20. Martz, E.: Protein Explorer: easy yet powerful macromolecular visualization. Trends in Biochemical Sciences 27(3), 107–109 (2002)

    Article  Google Scholar 

  21. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge Univ. Press, Cambridge (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, L. (2010). Near Optimal Solutions for Maximum Quasi-bicliques. In: Thai, M.T., Sahni, S. (eds) Computing and Combinatorics. COCOON 2010. Lecture Notes in Computer Science, vol 6196. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14031-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14031-0_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14030-3

  • Online ISBN: 978-3-642-14031-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics