Skip to main content

Data Mining in Precision Agriculture: Management of Spatial Information

  • Conference paper
Computational Intelligence for Knowledge-Based Systems Design (IPMU 2010)

Abstract

Precision Agriculture is the application of state-of-the-art GPS technology in connection with site-specific, sensor-based treatment of the crop. It can also be described as a data-driven approach to agriculture, which is strongly connected with a number of data mining problems. One of those is also an inherently important task in agriculture: yield prediction. The question is: can a field’s yield be predicted in-season using available geo-coded data sets?

In the past, a number of approaches have been proposed towards this problem. Often, a broad variety of regression models for non-spatial data have been used, like regression trees, neural networks and support vector machines. But in a cross-validation learning approach, issues with the assumption of the data records’ statistical independence keep emerging. Hence, the geographical location of data records should clearly be considered while establishing a regression model and assessing its predictive performance. This paper gives a short overview of the available data, points out in detail the main issue with the classical learning approaches and presents a novel spatial cross-validation technique to overcome the problems with the classical approach towards the aforementioned yield prediction task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, pp. 144–152. ACM Press, New York (1992)

    Chapter  Google Scholar 

  2. Breiman, L.: Bagging predictors. Technical report, Department of Statistics, Univ. of California, Berkeley (1994)

    Google Scholar 

  3. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  4. Brenning, A.: Spatial prediction models for landslide hazards: review, comparison and evaluation. Natural Hazards and Earth System Science 5(6), 853–862 (2005)

    Article  Google Scholar 

  5. Brenning, A., Itzerott, S.: Comparing classifiers for crop identification based on multitemporal landsat tm/etm data. In: Proceedings of the 2nd workshop of the EARSeL Special Interest Group Remote Sensing of Land Use and Land Cover, pp. 64–71 (September 2006)

    Google Scholar 

  6. Brenning, A., Lausen, B.: Estimating error rates in the classification of paired organs. Statistics in Medicine 27(22), 4515–4531 (2008)

    Article  MathSciNet  Google Scholar 

  7. Bühlmann, P.: Bootstraps for time series. Statistical Science 17, 52–72 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cressie, N.A.C.: Statistics for Spatial Data. Wiley, New York (1993)

    Google Scholar 

  9. Crone, S.F., Lessmann, S., Pietsch, S.: Forecasting with computational intelligence - an evaluation of support vector regression and artificial neural networks for time series prediction. In: International Joint Conference on Neural Networks, 2006. IJCNN ’06, pp. 3159–3166 (2006)

    Google Scholar 

  10. Griffith, D.A.: Spatial Autocorrelation and Spatial Filtering. In: Advances in Spatial Science, Springer, New York (2003)

    Google Scholar 

  11. Heege, H., Reusch, S., Thiessen, E.: Prospects and results for optical systems for site-specific on-the-go control of nitrogen-top-dressing in germany. Precision Agriculture 9(3), 115–131 (2008)

    Article  Google Scholar 

  12. Huang, C., Yang, L., Wylie, B., Homer, C.: A strategy for estimating tree canopy density using landsat 7 etm+ and high resolution images over large areas. In: Proceedings of the Third International Conference on Geospatial Information in Agriculture and Forestry (2001)

    Google Scholar 

  13. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of International Joint Conference on Artificial Intelligence (1995)

    Google Scholar 

  14. Lobell, D.B., Ortiz-Monasterio, J.I., Asner, G.P., Naylor, R.L., Falcon, W.P.: Combining field surveys, remote sensing, and regression trees to understand yield variations in an irrigated wheat landscape. Agronomy Journal 97, 241–249 (2005)

    Google Scholar 

  15. Meier, U.: Entwicklungsstadien mono- und dikotyler Pflanzen. In: Biologische Bundesanstalt fünd- und Forstwirtschaft, Braunschweig, Germany (2001)

    Google Scholar 

  16. Moran, P.A.P.: Notes on continuous stochastic phenomena. Biometrika 37, 17–33 (1950)

    MATH  MathSciNet  Google Scholar 

  17. Pozdnoukhov, A., Foresti, L., Kanevski, M.: Data-driven topo-climatic mapping with machine learning methods. Natural Hazards 50(3), 497–518 (2009)

    Google Scholar 

  18. R Development Core Team: R: A Language and Environment for Statistical Computing. In: R Foundation for Statistical Computing, Vienna, Austria (2009) ISBN 3-900051-07-0

    Google Scholar 

  19. Ruß, G.: Data mining of agricultural yield data: A comparison of regression models. In: Perner, P. (ed.) Advances in Data Mining. Applications and Theoretical Aspects. LNCS, vol. 5633, pp. 24–37. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Ruß, G., Kruse, R., Schneider, M., Wagner, P.: Estimation of neural network parameters for wheat yield prediction. In: Bramer, M. (ed.) AI in Theory and Practice II, July 2008. Proceedings of IFIP 2008, vol. 276, pp. 109–118. Springer, Heidelberg (July 2008)

    Chapter  Google Scholar 

  21. Ruß, G., Kruse, R., Schneider, M., Wagner, P.: Optimizing wheat yield prediction using different topologies of neural networks. In: Verdegay, J., Ojeda-Aciego, M., Magdalena, L. (eds.) Proceedings of IPMU ’08, pp. 576–582. University of Málaga (June 2008)

    Google Scholar 

  22. Ruß, G., Kruse, R., Wagner, P., Schneider, M.: Data mining with neural networks for wheat yield prediction. In: Perner, P. (ed.) ICDM 2008. LNCS (LNAI), vol. 5077, pp. 47–56. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Stafford, J.V., Ambler, B., Lark, R.M., Catt, J.: Mapping and interpreting the yield variation in cereal crops. Computers and Electronics in Agriculture 14(2-3), 101–119 (1996), Spatially Variable Field Operations

    Google Scholar 

  24. Stein, M.L.: Interpolation of Spatial Data: Some Theory for Kriging. Springer Series in Statistics. Springer, Heidelberg (June 1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ruß, G., Brenning, A. (2010). Data Mining in Precision Agriculture: Management of Spatial Information. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds) Computational Intelligence for Knowledge-Based Systems Design. IPMU 2010. Lecture Notes in Computer Science(), vol 6178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14049-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14049-5_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14048-8

  • Online ISBN: 978-3-642-14049-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics