
HAL Id: hal-00383070
https://hal.science/hal-00383070v3

Preprint submitted on 15 Feb 2010 (v3), last revised 20 May 2011 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Efficient Coq Tactic for Deciding Kleene Algebras
Thomas Braibant, Damien Pous

To cite this version:
Thomas Braibant, Damien Pous. An Efficient Coq Tactic for Deciding Kleene Algebras. 2010. �hal-
00383070v3�

https://hal.science/hal-00383070v3
https://hal.archives-ouvertes.fr

An Efficient Coq Tactic
for Deciding Kleene Algebras?

Thomas Braibant and Damien Pous

LIG, UMR 5217
INRIA Rhône-Alpes – CNRS

Abstract. We present a reflexive tactic for deciding the equational the-
ory of Kleene algebras in the Coq proof assistant. This tactic relies on a
careful implementation of efficient finite automata algorithms, so that it
solves casual equations almost instantaneously. The corresponding de-
cision procedure was proved correct and complete; correctness is es-
tablished w.r.t. any model (including binary relations), by formalising
Kozen’s initiality theorem.

Motivations

Proof assistants like Coq or Isabelle/HOL make it possible to leave technical
or administrative details to the computer, by defining high-level tactics. For
example, one can define tactics to solve decidable problems automatically (e.g.,
omega for Presburger arithmetic and ring for ring equalities). Here we present
a tactic for solving equations and inequations in Kleene algebras. This tactic
belongs to a larger project whose aim is to provide tools for working with binary
relations in Coq. Indeed, Kleene algebras correspond to a non-trivial decidable
fragment of binary relations. In the long term, we plan to use these tools to
formalise results in rewriting theory, process algebras, and concurrency theory
results. Binary relations play a central role in the corresponding semantics.

A starting point for this work is the following remark: proofs about abstract
rewriting (e.g., Newman’s Lemma, equivalence between weak confluence and the
Church-Rosser property, termination theorems based on commutation proper-
ties) are best presented using informal “diagram chasing arguments”. This is
illustrated by Fig. 1, where the same state of a typical proof is represented three
times. Informal diagrams are drawn on the left. The goal listed in the middle
corresponds to a naive formalisation where the points related by relations are
mentioned explicitly. This is not satisfactory: a lot of variables have to be intro-
duced, the goal is displayed in a rather verbose way, the user has to draw the
intuitive diagrams on its own paper sheet. On the contrary, if we move to an
algebraic setting (the right-hand side goal), where binary relations are seen as

? A preliminary version of this work was presented at the 1st Coq Workshop [6]
(München, August 2009). The code was completely rewritten since, as well as the
corresponding sections of this article (3,4).

· S?

''PPPPPP

H·
R 77nnnnnn

S? ''
·

· R?

77

· S?

((PPPPPP ·

·
R 66nnnnnn

S? ''
·

R? 77nnnnnn

? R?

FF

R,S: relation P
H: ∀p,r,q, R p r → S? r q
→ ∃s, S? p s & R? s q

p,q,q’,s: P
Hpq: R p q
Hqs: S? q s
Hsq ’: R? s q’
=========================
∃s: P, S? p s & R? s q’

R,S: X
H: R · S? ⊆ S? · R?

===============
R · S? · R? ⊆ S? · R?

Fig. 1. Diagrammatic, concrete, and abstract presentations of the same state in a proof.

abstract objects that can be composed using various operators (e.g., union, inter-
section, relational composition, iteration), statements and Coq’s output become
rather compact, making the current goal easier to read and to reason about.

More importantly, moving to such an abstract setting allows us to implement
several decision procedures, that could hardly be stated with the concrete pre-
sentation. For example, once we rewrite H in the right-hand side goal of Fig. 1,
we obtain the inclusion S?·R?·R?⊆S?·R? which is a (straightforward) theorem of
Kleene algebras: the tactic we describe in this paper proves it automatically.

Outline. We give some mathematical background and we sketch the overall
structure of the tactic in Sect. 1. The underlying design choices are discussed in
Sect. 2. We describe the algorithm and its correctness proof in Sect. 3. Section 4
is devoted to related works and directions for future work.

1 Deciding equalities in Kleene algebras

Theoretical background. A Kleene algebra [23] is a tuple 〈X, ·,+, 1, 0, ?〉, where
〈X, ·,+, 1, 0〉 is an idempotent non-commutative semiring, and ? is a unary op-
eration on X, satisfying the following axiom and inference rules (where ≤ is the
preorder defined by x ≤ y , x+ y = y):

1 + a · a? ≤ a?
a · x ≤ x
a? · x ≤ x

x · a ≤ x
x · a? ≤ x

Models of Kleene algebras include regular languages, where the star operation is
language iteration; and binary relations, where the product (·) is relational com-
position, and star is reflexive and transitive closure. Thanks to finite automata
theory [22,32], equality of regular languages is decidable:

“two regular languages are equal if and only if the corresponding minimal
automata are isomorphic”.

However, the above theorem is not sufficient to decide equations in all Kleene
algebras: it only applies to the regular languages model. We actually need a more
recent theorem, by Kozen [23] (independently proved by Krob [27]):

2

“if two regular expressions α and β denote the same regular language,
then α = β can be proved in any Kleene algebra”.

In other words, the algebra of regular languages is initial among Kleene algebras:
we can use finite automata algorithms to solve equations in an arbitrary Kleene
algebra A. The main idea of Kozen’s proof is to encode finite automata using
matrices over A, and to replay the algorithms at this algebraic level. Indeed, a
finite automaton with transitions labelled by the elements of A can be repre-
sented with three matrices 〈u,M, v〉 ∈ M1,n ×Mn,n ×Mn,1: n is the number
of states of the automaton; u and v are 0-1 vectors respectively coding for the
sets of initial and accepting states; and M is the transition matrix: Mi,j labels
transitions from state i to state j.

We remark that the product u ·M · v is a scalar, which can be thought of
as the set of one-letter words accepted by the automaton. Therefore, in order to
mimic the actual behaviour of a finite automaton, we just need to iterate over the
matrix M . This is possible thanks to another theorem, which actually is the crux
of the initiality theorem: “square matrices over a Kleene algebra form a Kleene
algebra”. We hence have a star operation on matrices, and we can interpret an
automaton algebraically, by considering the product u ·M? · v.

Overview of our strategy. We define a reflexive tactic. This methodology is quite
standard [2]; it was used by Grégoire and Mahboubi to obtain the current ring

tactic [16]. Concretely, this means that we implement the decision procedure as
a Coq program, and that we prove its correctness and completeness within the
proof assistant:
Definition decide_kleene: regex → regex → bool := ...
Theorem Kozen: ∀ a b, decide_kleene a b = true ↔ a == b.

The above statement corresponds to correctness and completeness with re-
spect to the syntactic “free” Kleene algebra’: regex is the obvious inductive type
for regular expressions over a given set of variables, and == is the inductive
equality generated by the axioms of Kleene algebras (see Fig. 4). Using Coq’s
reification mechanism, this is sufficient for our needs: the result can be lifted to
other models using simple tactics (we return to this point in Sect. 2.3).

The equational theory of Kleene algebras is PSPACE-complete [29]; standard
algorithms are exponential in worst case. This means that the decide kleene

function must be written with some care, using efficient out-of-the-shelf algo-
rithms. Notably, the matricial representation of automata is not efficient, so that
formalising Kozen’s “mathematical” proof [23] in a naive way would be compu-
tationally impracticable. Instead, we need to chose appropriate data structures
for automata and algorithms, and to rely on the matricial representation only
in proofs, using the adequate translation functions.

2 Underlying design choices

Before giving more details about our implementation of the decision procedure
(Sect. 3), we explain the main choices we made about the design of our library:

3

definition of the algebraic hierarchy, representation of matrices and handling of
heterogeneous structures, reification mechanism, numbers representation.

2.1 Algebraic hierarchy

The mathematical definition of a Kleene algebra is incremental: a Kleene alge-
bra is a non-commutative semiring, which is itself composed of a monoid and
a semi-lattice. Moreover, proofs naturally follow this hierarchy: when proving
results about semirings, one usually rely on results about both monoids and
semi-lattices. In order to structure our development in a similar way, we defined
the algebraic hierarchy using Coq’s recent typeclasses mechanism [33]: we de-
fined several classes, corresponding to the different algebraic structures, so as to
obtain the following “sub-class” relations:

SemiLattice <:
Monoid <:

SemiRing <: KleeneAlgebra <: ...

Records vs. modules. Typeclasses are based on records; another possibility was
to use modules. We tried the latter one; it was however quite difficult to organise
modules, signatures, and functors so as to obtain the desired level of sharing
between the various proofs. In particular, when we consider more complex al-
gebraic structures, we can no longer work with syntactical sub-typing between
structures (we only have functors from one structure to another) and we lose the
ability to directly use theorems, definitions, and tactics from lower structures in
higher structures. Except for some limitations due to the novelty of this feature,
typeclasses happen to be much easier to use than modules for defining such a
hierarchy. Sharing is obtained in a straightforward way, the code does not need
to be written in a monolithic way (as opposed to using functors), and there are
nice and simple solutions for overloading notations (e.g., we can use the same
infix symbol for multiplication in a monoid, a semiring, or a matrix semiring).

Typeclasses vs. canonical structures. Canonical structures is another record-
based inference mechanism, which we use in combination with typeclasses to
declare concrete structures. We tried to use canonical structures instead of type-
classes to define the algebraic hierarchy from the beginning, along the lines
of [15,3,14]. The overall benefit was unclear. This is mainly because our hi-
erarchy is not really deep, so that we can handle it with typeclasses without
introducing a complex infrastructure (we reached the limit, however: some of
our proofs are noticeably slow to compile, due to this simplistic approach). An-
other reason is that we lack a deep understanding of Coq internal unification
algorithm, which currently seems to be required to work efficiently with canoni-
cal structures. Therefore, we might switch to canonical structures at some point,
when this technology will be better understood and supported.

4

2.2 Matrices

Coq definition. A matrix can be seen as a partial map from pairs of integers to
a given type X, so that a Coq type for matrices and a sum operation could be
defined as follows:
Definition MX (n m: nat) := ∀ i j, i<m → j<n → X.
Definition plus n m (M N: MX n m) i j (Hi: i<n) (Hj: j<n) :=

M i j Hi Hj + N i j Hi Hj.

This corresponds to the dependent types approach: a matrix is a map to X from
two integers and two proofs that these integers are lower than the bounds of
the matrix. Except for the concrete representation, this is the approach followed
in [3,14,4]. With such a type, every access to a matrix element must be made
by exhibiting two proofs, to ensure that indices lie within the bounds. This
is not so problematic for simple operations like the above plus function; this
however requires more boilerplate for other functions, like block decomposition
operations.

We actually adopt another strategy: we move bounds checks to equality
proofs, by working with the following definitions:
Definition MX n m := nat → nat → X.
Definition equal n m (M N: MX n m) := ∀ i j, i<n → j<m → M i j == N i j.
Fixpoint sum i k (f: nat → X) :=

match k with 0 ⇒ 0 | S k ⇒ f i + sum (S i) k f end.
Definition dot n m p (M: MX n m) (N: MX m p) :=

fun i j ⇒ sum 0 m (fun k ⇒ M i k · N k j).

Here, a matrix is an infinite function from pairs of integers to X, and equality is
restricted to the domain of the matrix. With these definitions, we do not need to
manipulate proofs when defining matrix operations (like the above dot function),
so that subsequent definitions are easier to write. Bounds checks are required a
posteriori only, when proving properties about these matrices operations, e.g.,
associativity of the product. This is generally straightforward: these proofs are
done within the interactive proof mode, so that they can be solved with high
level tactics like omega. (Note that this separation between proofs and programs
could be achieved syntactically—even with a dependently typed definition of
matrices—by using Coq’s Program feature; we prefer our lightweight solution
since it is more efficient from the computational point of view: not a single
boundary proof gets evaluated in matrix computations.)

Although the correctness proof of our algorithm heavily relies on matricial
reasoning, and in particular block matrix decompositions, we have not found
major drawbacks to this approach yet. We actually believe that it would scale
smoothly to even more intensive usages of matrices, e.g., linear algebra [14].

Phantom types. Unfortunately, these non-dependent definitions allow one to type
the following code, where the three additional arguments of dot are implicit:
Definition ill_dot n p (M: MX n 16) (N: MX 64 p): MX n p := dot M N.

This definition is accepted because of the conversion rule: since the dependent
type MX n m does not mention n nor m in its body, these type informations can
be discarded by the type system using the conversion rule (MX n 16 = MX n 64).

5

While such an ill-formed definition will be detected at proof-time; it is a bit sad
not to benefit from the advantages of a strongly typed programming language
here. We partially solved this problem by resorting to an inductive singleton
definition, reifying bounds in phantom types:
Inductive MX (n m: nat) := box: (nat → nat → X) → MX n m.
Definition get (n m: nat) (M: MX n m) := match M with box f ⇒ f end.
Definition plus (n m: nat) (M N: MX n m) :=

box n m (fun i j ⇒ get M i j + get N i j).

Coq no longer equates types MX n 16 and MX n 64 with this definition, so that the
above ill dot function is rejected, and we can trust inferred implicit arguments
(e.g., the m argument of dot).

Computation. From a computational point of view, using functions as a repre-
sentation for matrices is two-edged : on the one hand, if the matrix resulting of
a computation is seldom used, then computing its elements by need is efficient;
on the other hand, making numerous accesses to the same expensive compu-
tation may be a burden. To this end, we defined a memoisation operator that
computes all elements of a given matrix, stores the results in a list of lists, and
returns the closure that looks up in the lists rather than recomputing the result.
This memoisation operator can be proved to be an identity; it can be inserted
in matrix computations in a transparent way, at judicious places.
Definition mx_force n m (M: MX n m): MX n m :=

let l := mx_to_lists M in box n m (fun i j ⇒ nth i (nth j l)).
Lemma mx_force_id : ∀ n m (M : MX n m), mx_force M == M.

2.3 Typed algebras, typed reification

Adding types. Square matrices over a semiring form a semiring. However, for
rectangular matrices, the various operations are only partial: dimensions have to
agree. Therefore, with naive definitions of the algebraic structures, we are unable
to use theorems and tools developed for monoids, semi-lattices, and semirings
to reason about rectangular matrices. To remedy this problem, we generalised
algebraic structures from the beginning using types. An example is given in Fig. 2:
a typical signature for semirings is presented on the left-hand side; we moved to
the signature on the right-hand side, where a set T of indices (or types) is used
to constrain the various operations. These abstract indices can be thought of
as matrix dimensions; we actually moved to a categorical setting: T is a set of
objects, X n m is the set of morphisms from n to m, one is the set of identities, and
dot is composition. (This concept of typed algebras is slightly different from that
of graded algebras, where the operations remain totally defined, e.g., polynomials
of different degrees can always be summed.)

As expected, with such definitions, one can form arbitrary matrices over a
typed structure, and obtain another instance of this typed structure, as shown
below (this code relies on our use of maximally inserted implicit arguments for
the carrier and operations of the algebraic structures):
Instance mx_SemiRing: SemiRing → SemiRing := ...
Instance mx_KleeneAlgebra: KleeneAlgebra → KleeneAlgebra := ...

6

X: Type.

dot: X → X → X.
one: X.
plus: X → X → X.
zero: X.
star: X → X.

dot_neutral_left:
∀ x, dot one x = x.

...

T: Type.
X: T → T → Type.

dot: ∀ n m p, X n m → X m p → X n p.
one: ∀ n, X n n.
plus: ∀ n m, X n m → X n m → X n m.
zero: ∀ n m, X n m.
star: ∀ n, X n n → X n n.

dot_neutral_left:
∀ n m (x: X n m), dot one x = x.

...

Fig. 2. From Kleene algebras to typed Kleene algebras.

Then, thanks to typeclasses, we inherit all theorems, tactics, and notations we
defined on generic structures, at the matricial level. Notably, when defining the
star operation on matrices over a Kleene algebra, we can benefit from all tools
for semirings, monoids, and semi-lattices. This is quite important since this con-
struction is rather complicated.

Removing types. Typed structures not only make it easier to work with rect-
angular matrices, they also give rise to a wider range of models. In particular,
we can consider heterogeneous binary relations rather than binary relations on
a single fixed set. This leads to the following question: can the usual decision
procedures be extended to this more general setting? Consider for example the
equation a · (b · a)? = (a · b)? · a, which is a theorem of typed Kleene algebras as
soon as a and b are respectively given types n→ m and m→ n, for some n,m;
how to ensure that the untyped automata algorithms respect types and actually
give valid, well-typed, proofs?

For efficiency and practicability reasons, extending our decision procedure
to work with typed elements is not an option. Instead, we proved the following
theorem, which allows one to erase types, i.e., to transform a typed equality goal
into an untyped one:

TΣ ` u = v Γ ` uB α : n→ m Γ ` v B β : n→ m

A ` α = β : n→ m
(∗)

Here, Γ ` u B α : n → m reads “under the evaluation and typing context Γ ,
the untyped term u can be evaluated to α, of type n → m”; this predicate can
be defined inductively in a straightforward way, for various algebraic structures.
The theorem can then be rephrased as follows: “if the untyped terms u and v are
equal, then for all typed interpretations α and β of u and v, the typed equality
α = β holds”. See [31] for a theoretical study of these untyping theorems; also
note that Kozen investigated a similar question [24] and came up with a slightly
different solution: he solves the case of the Horn theory rather than equational
theory, at the cost of working in a restrained form of Kleene algebras.

Typed reification. The above discussion about types raises another issue: reflexive
tactics need to work with syntactical objects. For example, in order to construct

7

an automaton, we need to proceed by structural induction on the given expres-
sion. This step is commonly achieved by moving to the free algebra of terms,
and resorting to Coq’s reification mechanism (quote). However, this mechanism
does not handle typed structures, so that we needed to re-implement it. Since
we do not have binders, we were able do this within Ltac: it suffices to eapply

theorem (∗) to the current goal, so that we are left with three goals, with holes
for u, v and Γ . Then, by using an adequate representation for Γ , and by ex-
ploiting the very simple form of the typing and evaluation predicate, we are able
to progressively fill these holes and to close the two goals about evaluation, by
repeatedly applying constructors and ad-hoc lemmas about environments.

Unlike Coq’s standard quote mechanism, which works by conversion and
has no impact on the size of proofs, this simple “user-level”-quote generates
large proof-terms. In fact, this is the current bottleneck of our tactic: on casual
examples, the time spent in reification exceeds the time spent in computations!
We thus plan to implement an efficient reification mechanism, possibly in OCaml.

2.4 Numbers, finite sets, and finite maps

To code our decision procedure, we mainly need natural numbers, finite sets, and
finite maps. Coq provides several representations for natural numbers: Peano
integers (nat), binary positive numbers (positive), and big natural numbers in
base 231 (BigN.t), the latter being shipped with an underlying mechanism to use
machine integers and perform efficient computations. Similarly, there are various
implementations of finite maps and finite sets, based on ordered lists (FMapList),
AVL trees (FMapAVL), or uncompressed Patricia trees, tailored to positive keys
(FMapPositive).

While Coq’s standard library features well-defined interfaces for finite sets
and finite maps, the different definitions of numbers lack this standardisation.
In particular, the provided tools vary greatly depending on the implementation.
For example, the tactic omega, that decides Presburger’s arithmetic on nat, is
not available for positive. To abstract from this choice of basic data structures,
and to obtain a modular code, we designed a small interface to package natu-
ral numbers together with the various operations we need, including sets and
maps. We specified these operations with respect to nat, and we defined several
automation tactics. In particular, by automatically translating goals to the nat

representation, we can use the omega tactic in a transparent way.
We provide several implementations of this interface, so that one can experi-

ment with the possible choices and compare their performances; we discuss this
point in Sect. 4.1.

3 The algorithm and its proof

We now focus on the heart of our tactic: the decision procedure and the cor-
responding correctness proof. The algorithm that decides whether two regular
expressions denote the same language can be decomposed into four steps:

8

Module MAUT.
Record t := build {
size: nat;
initial: MX 1 size;
delta: MX size size;
final: MX size 1

}.
Definition eval(A: t): regex :=
mx_to_scal
((initial A) · (delta A)? · (final A)).

End MAUT.

Module eNFA.
Record t := build {
size: state;
labels: label;
epsilon: state→ stateset;
deltamap: label→state→ stateset;
initial: state;
final: state }.

Definition to_MAUT(A: t): MAUT.t.
Definition eval A :=
MAUT.eval (to_MAUT A).

End eNFA.

Module NFA.
Record t := build {
size: state;
labels: label;
delta: label→state→ stateset;
initiaux: stateset;
finaux: stateset }.

Definition to_MAUT(A: t): MAUT.t.
Definition eval A :=
MAUT.eval (to_MAUT A).

End NFA.

Module DFA.
Record t := build {
size: state;
labels: label;
delta: label→state→state;
initial: state;
finaux: stateset }.

Definition to_MAUT(A: t): MAUT.t.
Definition eval A :=
MAUT.eval (to_MAUT A).

End DFA.

Fig. 3. Coq types and evaluation functions of the four automata representations.

1. construct non-deterministic finite automata with epsilon-transitions (ε-NFA);
2. remove epsilon-transitions to get non-deterministic finite automata (NFA);
3. determinise the automata to obtain deterministic finite automata (DFA);
4. check that the two DFAs are equivalent.

The third step can produce automata of exponential size. Therefore, we have
to carefully select our construction algorithm, so that it produces rather small
automata. More generally, we have to take a particular care about efficiency;
this drives our choices about both data structures and algorithms.

The Coq types we used to represent finite automata are given in Fig. 3; we use
modules only for handling the namespace; the type regex is defined in Fig. 4,
label and state are notations for the type of numbers. The first record type
(MAUT.t) corresponds to the matricial representation of automata; it is rather
high-level but computationally inefficient; we use it only in proofs, through the
evaluation function MAUT.eval (MX n m is the type of n×m matrices over regex;
the evaluation function calculates the matricial product u ·M? · v and casts it to
a regex). The three other types are efficient representations for the three kinds
of automata we mentioned above; fields size and labels respectively code for
the number of states and labels (or variables, letters), the other fields are self-
explanatory. In each case, we define a translation function to matricial automata
(to MAUT), so that each kind of automata can eventually be evaluated into a
regular expression.

The overall structure of the correctness proof is depicted in Fig. 5. Datatypes
are recalled on the left-hand side; the outer part of the right-hand side corre-
sponds to computations: starting from two regular expressions α and β, two

9

Inductive regex :=
| dot: regex→regex→regex
| plus: regex→regex→regex
| star: regex→regex
| one: regex
| zero: regex
| var: label→regex.

Inductive eq :=
| eq_trans: Transitive eq
| eq_sym: Symmetric eq
| eq_dot_zero: ∀e, e · 0==0
| eq_plus_idem: ∀e, e+e==e
| ...
where "e==f" := (eq e f).

Fig. 4. Regular expressions.

regex

Construction

��

α_

�� @
@

@
@

@
@

@
@ β_

��~
~

~
~

~
~

~
~

eNFA.t

Epsilon removal

��

A1_

��

eval // ·

�
�
�

�
�
� ·

�
�
�

�
�
� B1

evaloo
_

��
NFA.t

Determinisation

��

A2_

��

eval // ·

�
�
�

�
�
� ·

�
�
�

�
�
� B2

evaloo
_

��
DFA.t A3

eval // · ___ ___ · B3
evaloo

equiv

Fig. 5. Correctness of the algorithm.

DFAs A3 and B3 are constructed and tested for equivalence. The proof corre-
sponds to the inner equalities (==): we show that each automata construction
preserves the semantics of the initial regular expressions, through evaluation, and
that two DFAs evaluate to equal values whenever they are declared equivalent
by the corresponding algorithm.

In the following sections, we give more details about our implementation of
each step of the decision procedure, together with a sketch of our correctness
proof (although we do not implement the same algorithms, this proof is largely
based on Kozen’s one [23]).

3.1 Construction

There are several ways of constructing an ε-NFA from a regular expression. At
first, we implemented Thompson’s construction [36], for its simplicity; we finally
switched to a variant of the Ilie and Yu’s construction [19] which produces smaller
automata. This algorithm constructs an automaton with a single initial state
and a single accepting state (respectively denoted by i and f); it proceeds by
structural induction on the given regular expression. The corresponding steps are
depicted below; the first drawing corresponds to the base cases (variable, one,
zero); the second one is union (plus): we recursively build the two sub-automata
between i and f ; the third one is concatenation: we introduce a new state, p,
build the first sub-automaton between i and p, and the second one between p
and f ; the last one is for iteration (star): we build the sub-automata between a
new state p and p itself, and we link i, p, and f with two epsilon-transitions.

'&%$!"#i
a/ε/∅

///.-,()*+f '&%$!"#i
A

B

/.-,()*+f '&%$!"#i A p B /.-,()*+f '&%$!"#i ε
// p

ε
//

A

/.-,()*+f
To avoid costly union operations, we actually use an accumulator (an ε-NFA) to
which we recursively add states and transitions.

10

We prove correctness in two steps, by using a more high-level algorithm.
This algorithm is very similar to the previous one, except that it works with the
matricial representation (MAUT.t). The following lemma states that the corre-
sponding implementations are equivalent (regex to eNFA is the efficient function,
regex to MAUT is the high-level one, and === is matricial automata equality):
Lemma step1: ∀e, eNFA.to_MAUT (regex_to_eNFA e) === regex_to_MAUT e.

Therefore, it suffices to prove correctness for the high-level construction—the
following lemma—for which we can use algebraic and matricial reasoning.
Lemma step2: ∀e, MAUT.eval (regex_to_MAUT e) == e.

To obtain the latter lemma, we have to consider the following one, where build

is the recursive function that underpins regex to MAUT: build e i f A applies
the above construction to the regular expression e, between states i and f of
the matricial automaton accumulator A; and add e i f A just adds a transition
labelled e to A, between i and f.
Lemma step2 ’: ∀ e i f A, MAUT.eval (build e i f A) == MAUT.eval (add e i f A).

As an example of the kind of algebraic reasoning we need to formalise, the
following property of star w.r.t. block matrices is used twice: with (x, y, z) =
(e, 0, f), it gives the case of a concatenation (e · f); with (x, y, z) = (1, e, 1) it
yields iteration (e?). In both cases, the line and the column that are added on
the left-hand side correspond to the state (p) generated by the construction .

ˆ
u 0
˜
·

266664
... 0

· · · Mi,f · · · x
... 0

0 z 0 y

377775
?

·
»
v

0

–
= u ·

2664
...

· · · Mi,f + x · y? · z · · ·
...

3775
?

· v

Finally, by combining the lemmas step1 and step2, we obtain the correctness of
our construction algorithm, i.e., we can fill the two triangles from Fig. 5:
Theorem construction_correct: ∀e, eNFA.eval (regex_to_eNFA e) == e.

3.2 Epsilon transitions removal

The automata obtained with the above construction contain epsilon-transitions:
their transitions matrices are of the form M = J+N with N =

∑
a a ·Na, where

J and the Na are 0-1 matrices. J and N respectively correspond to the graph
of epsilon and labelled transitions. Algebraically, removing epsilon-transitions is
achieved using a simple law: ∀xy, (x+ y)? = x? · (y · x?)?. This law yields

u · (J +N)? · v = u · J? · (N · J?)? · v ,

so that automata 〈u,N, v〉 and 〈u · J?, N · J?, v〉 are equivalent. We furthermore
check that the latter automaton no longer contains epsilon-transitions: this is a
NFA. This algebraic proof is not surprising: looking at 0-1 matrices as binary
relations, J? actually corresponds to the reflexive-transitive closure of J .

11

Although this is how we prove the correctness of this step, computing J? alge-
braically is inefficient: we have to implement a proper transitive closure algorithm
for the low-level representation of automata. To obtain an efficient algorithm, we
rely on a property of the construction from Sect. 3.1: when given regular expres-
sions in “strict star” form, the produced ε-NFAs have acyclic epsilon-transitions.
More precisely, we say that a regular expression is strict if the corresponding
language does not accept the empty word; we says that a regular expression is
in strict star form if for all its sub-expressions of the form e?, e is strict. Intu-
itively, the only possibility for introducing an epsilon-cycle in the construction
from Sect. 3.1 comes from star expressions. By forbidding the empty word to
appear in such cases, we prevent the formation of epsilon-cycles.

Concretely, this means that: 1) we wrote a recursive function that transforms
a regular expression into an equivalent one, in strict star form; 2) we proved that
our construction algorithm returns ε-NFAs whose reversed epsilon-transitions
are well-founded, when the argument is in strict star form; 3) based on this
assumption we implemented a linear transitive closure algorithm, using well-
founded recursion and memoisation; 4) we proved that this algorithm actually
yields an automata (of type NFA.t) whose translation into matricial automata is
exactly 〈u · J?, N · J?, v〉, so that the above algebraic proof applies.

3.3 Determinisation

Determinisation is exponential in worst case: this is a power-set construction.
However, examples where this bound is reached are rather contrived: the empir-
ical complexity is tractable. The algorithm consists in enumerating the subsets
that are accessible from the subset of initial states of the given NFA. Starting
from a NFA 〈u,M, v〉 with n states, it returns a DFA 〈û, M̂ , v̂〉 with n̂ states,
together with a injective map ρ from [1..n̂] to subsets of [1..n]. We sketch the
algebraic part of the correctness proof. Let X be the (n̂, n) 0-1 matrix defined
by Xsj , j ∈ ρ(s), we prove that the following commutation properties hold:

M̂ ·X = X ·M (1) û ·X = u (2) v̂ = v ·X (3)

The intuition is that X is a “decoding” matrix: it sends states of the DFA to
the characteristic vectors of the corresponding subsets of the NFA. Therefore,
(1) can be read as follows: executing a transition in the DFA and then decoding
the result is equivalent to decoding the starting state and executing parallel
transitions in the NFA. Similarly, (2) states that the initial state of the DFA
corresponds to the set of initial states of the NFA. From (1), we deduce that
(M̂)? ·X = X ·M? using a theorem of Kleene algebras; we conclude with (2, 3):

û · (M̂)? · v̂ = û · (M̂)? ·X · v = û ·X ·M? · v = u ·M? · v .

A difficulty in the concrete implementation of this algorithm comes from
termination: the main loop is executed at most 2n times (there are 2n subsets
of [1..n]), but we cannot use this bound directly. Indeed, we can easily deter-
minise NFAs with 500 states in practice, while computing 2500 is obviously out

12

of reach (the binary representation of numbers does not help since we need to
do structural “unary” recursion). We thus have to iterate lazily. In a first im-
plementation of the algorithm, we used well-founded recursion. This was really
inconvenient: the code could not be formulated in a natural way, and we had to
use multiset orderings to prove well-foundedness. Instead, we currently use the
following “pseudo-fixpoint operators”, defined in continuation passing style:

Variables A B: Type.
Fixpoint linearfix n (f: (A → B) → A → B) (k: A → B) (a: A): B :=

match n with O ⇒ k a | S n ⇒ f (linearfix n f k) a end.
Fixpoint powerfix n (f: (A → B) → A → B) (k: A → B) (a: A): B :=

match n with O ⇒ k a | S n ⇒ f (powerfix n f (powerfix n f k)) a end.

Intuitively, linearfix n f k lazily approximates a potential fixpoint of the func-
tional f: if a fixpoint is not reached after n iterations, it uses k to escape. The
powerfix operator behaves similarly, except that it escapes after 2n−1 iterations:
we prove that powerfix n f k a is equal to linearfix (2n − 1) f k a. Thanks
to these operators, we can write the code to be executed using powerfix, while
keeping the ability to reason about the simpler code obtained with a naive struc-
tural iteration over 2n: both versions of the code are easily proved equivalent,
using the intermediate linearfix characterisation.

3.4 Equivalence checking

Two DFAs are equivalent if and only if their respective minimised DFAs are
equal up-to isomorphism. Whilst exploring all state permutations is sufficient to
obtain decidability, there is a more direct and efficient approach that does not
require minimisation: one can perform an on-the-fly simulation check, using an
almost linear algorithm by Hopcroft and Karp [1].

This algorithm proceeds as follow: it computes the disjoint union automata
〈u,M, v〉, and checks that the former initial states (iA, iB) are equivalent. Intu-
itively, two states are equivalent if they can match each other’s transitions to
reach equivalent states, with the constraint that no accepting state can be equiv-
alent to a non-accepting one. Hence, the algorithm starts with a pair of states
that must be equivalent—typically (iA, iB)—and try to recursively equate their
reducts along transitions. To be almost linear, the algorithm uses a disjoint-sets
data structure to compute equivalence classes. Indeed, if the pairs {i, j} and
{j, k} have already been equated, one can skip the pair {i, k} if encountered.

To our knowledge, there are two implementations of union-find data struc-
tures in Coq [10,28]. However, [10] is not computational, and [28] is more geared
toward extraction (it uses sig types). Therefore, we had to re-implement and
prove this data structure from scratch. Namely, we implemented disjoint-sets
forests [11] with path compression and the usual “union by rank” heuristic.

Like previously, the correctness of the equivalence check is proved alge-
braically: we define a 0-1 matrix Y to encode the obtained equivalence relation
on states, and we prove that it satisfies the following properties.

1 ≤ Y (1) Y · Y ≤ Y (2) Y ·M ≤M · Y (3)

iA · Y = iB · Y (4) Y · v = v (5)

13

Equations (1, 2) correspond to the fact that Y encodes a reflexive and transitive
relation. The remaining equations assess that Y is a simulation (3), that the
initial arguments are equated (4), and that related states are either accepting or
non accepting (5). From these we deduce M? · Y · v = Y ·M? · v using Kleene
algebra laws, and the correctness follows,:

iA ·M? · v = iA ·M? · Y · v = iA · Y ·M? · v = iB · Y ·M? · v = iB ·M? · v

3.5 Completeness: counter-examples

By combining the proofs from the above sections according to Fig. 5, we obtain
the correctness of the decision procedure: if decide kleene a b returns true, then
a==b. We also proved the the converse implication, i.e., completeness. This basi-
cally amounts to exhibiting a counter-example in the case where the DFAs are
not equivalent. From the algorithmic point of view, this is almost straightfor-
ward: it suffices to record the word that is being read in the algorithm from
Sect. 3.4; when two states that should be equalised differ by they accepting sta-
tus, we know that the current word is accepted by one DFA and not by the other
one. (In particular, the decide kleene function actually returns an option (list

label) rather than a boolean, so that the counter-example is given to the user.)
From the proof point of view, to obtain the reverse implication of the equiv-

alence we mentioned in Sect. 1, we just have to show that languages (i.e., pred-
icates over list of labels, list label→Prop) form a Kleene algebra in which the
language accepted by a DFA is exactly the language obtained with DFA.eval:
Theorem interp_DFA_eval: ∀ A: DFA.t, DFA_language A [=] interp (DFA.eval A).

(DFA.eval actually returns a regular expression which we need to interpret as a
language; [=] is language equality, i.e., pointwise equivalence of the predicates.)

4 Conclusions

We presented a reflexive tactic for deciding Kleene algebra equalities. This tactic
belongs to a broader project whose aim is to provide algebraic tools for working
with binary relations in Coq; the development can be downloaded from [5].
To our knowledge, this is the first certified efficient implementation of these
algorithms and their integration as a generic tactic.

4.1 Performances

We performed intensive tests on randomly generated regular expressions. On
typical use cases, the tactic runs instantaneously (except for the time spent in
the reification mechanism, as explained at the end of Sect. 2.3). It runs in less
than one second for expressions with 150 internal nodes and 20 variables, and less
than one minute for even larger expressions (1000 internal nodes, 40 variables),
that are very unlikely to appear in “human-written” proofs.

Thanks to the efficient implementation of radix-2 search trees (PositiveMap),
we get higher performances if we use positive rather than BigN.t, despite the
underlying mechanism that uses machine arithmetic—a recent feature of Coq.

14

4.2 Related works

The idea of reasoning about binary relations algebraically is old [35,12]. Among
others [21,37], Struth applied this idea within an interactive theorem prover [34].
He later turned to automated first-order theorem provers (ATP): Höfner and him
verified facts about various relation algebras [17,18] using Prover9, a resolution/-
paramodulation based ATP. Our approaches are quite different: we implemented
a decision procedure for a decidable theory, whereas their proposal consists in
feeding a generic automated prover with the axioms of some algebras, and to see
how far the prover can go by itself. As a consequence, their methodology applies
directly to a very wide class of goals and algebras, while we are restricted to
the equational theory of Kleene algebras. On the other hand, our tactic returns
instantaneously, even when the goal is not provable, while Prover9 is unpre-
dictable: even for very simple goals, it can diverge, find a proof immediately, or
find a proof in a few minutes [18].

At the time we started this project, Briais formalised decidability of regular
languages equality [7]. However, his approach is not computational, so that even
straightforward identities cannot be checked by letting Coq compute.

Narboux defined a set of Coq tactics for diagrammatic proofs [30]. He works
in the concrete setting of binary relations, which makes it possible to represent
more diagrams, but does not scale to other models. The level of automation is
rather low: it basically reduces to a set of hints for the auto tactic.

Our notion of strict star form (Sect. 3.2) was inspired by the standard notion
of star normal form [8] and the idea of star unavoidability [19]. To our knowledge,
the facts that we can always rewrite regular expressions in such a form and that
ε-NFAs with acyclic epsilon-transitions can be constructed in this way are new.

4.3 Directions for future work

Earlier failure checks. Our algorithm for checking equivalence of DFAs returns
a counter-example whenever two non-equivalent states are encountered. This
optimisation greatly improves over standard minimisation-based algorithms, but
we could go one step further, by checking the equivalence on-the-fly, during the
determinisation phase. In this way, we could abort the computation of DFAs as
soon as a discrepancy is found.

KAT, Hoare logic. We plan to extend our decision procedure to Kleene algebras
with tests (KAT), so as to provide automation to prove correctness of programs
in Hoare logic [25]. A first possibility would be to encode KAT expressions into
KA [26] and to use the current tactic. This encoding being potentially exponen-
tial, it is unclear whether this approach would be tractable. A more involved
approach would be to use the dedicated automata construction presented in [9].

Richer algebras. Kleene algebras lack several important operations from binary
relations: intersection, converse, complement, residuals. . . We plan to develop
other tools for algebras dealing with these operators, in particular Kleene alge-
bras with converse, residuated lattices [20], and fragments of allegories [13].

15

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, 1974.

2. S. F. Allen, R. L. Constable, D. J. Howe, and W. E. Aitken. The semantics of reflected proof.
In Proc. LICS ’90, pages 95–105. IEEE Computer Society, 1990.

3. Y. Bertot, G. Gonthier, S. Ould Biha, and I. Pasca. Canonical big operators. In Proc.
TPHOL ’08, volume 5170 of LNCS, pages 86–101. Springer, 2008.

4. F. Blanqui, S. Coupet-Grimal, W. Delobel, and A. Koprowski. CoLoR: a Coq library on rewrit-
ing and termination, 2006.

5. T. Braibant and D. Pous. Coq library: ATBR, algebraic tools for working with binary relations.
http://sardes.inrialpes.fr/~braibant/atbr/, May 2009.

6. T. Braibant and D. Pous. A tactic for deciding Kleene algebras. In 1st Coq Workshop. Tech.
Univ. München, August 2009.

7. S. Briais. Coq development: Finite automata theory. http://www.prism.uvsq.fr/~bris/tools/
Automata_080708.tar.gz, July 2008.

8. A. Brüggemann-Klein. Regular expressions into finite automata. TCS, 120(2):197–213, 1993.
9. E. Cohen, D. Kozen, and F. Smith. The complexity of Kleene algebra with tests. Technical

Report TR96-1598, Computer Science Department, Cornell University, July 1996.
10. S. Conchon and J.-C. Filliâtre. A Persistent Union-Find Data Structure. In ACM SIGPLAN

Workshop on ML, pages 37–45, Freiburg, Germany, October 2007.
11. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT

Press, Cambridge, MA, second edition, 2001.
12. H. Doornbos, R. Backhouse, and J. van der Woude. A calculational approach to mathematical

induction. TCS, 179(1-2):103–135, 1997.
13. P. Freyd and A. Scedrov. Categories, Allegories. North Holland, 1990.
14. F. Garillot, G. Gonthier, A. Mahboubi, and L. Rideau. Packaging mathematical structures. In

TPHOLs, volume 5674 of LNCS, pages 327–342. Springer, 2009.
15. G. Gonthier, A. Mahboubi, L. Rideau, E. Tassi, and L. Théry. A modular formalisation of finite

group theory. In Proc. TPHOL ’07, volume 4732 of LNCS, pages 86–101. Springer, 2007.
16. B. Grégoire and A. Mahboubi. Proving equalities in a commutative ring done right in Coq. In

Proc. TPHOL ’05, volume 3603 of LNCS, pages 98–113. Springer, 2005.
17. P. Höfner and G. Struth. Automated reasoning in Kleene algebra. In CADE, volume 4603 of

LNCS, pages 279–294. Springer, 2007.
18. P. Höfner and G. Struth. On automating the calculus of relations. In Proc. IJCAR, volume

5195 of LNCS, pages 50–66. Springer, 2008.
19. L. Ilie and S. Yu. Follow automata. Inf. and Comp., 186(1):140–162, 2003.
20. P. Jipsen. From semirings to residuated Kleene lattices. Studia Logica, 76(2):291–303, 2004.
21. W. Kahl. Calculational relation-algebraic proofs in Isabelle/Isar. In RelMiCS, volume 3051 of

LNCS, pages 178–190. Springer, 2003.
22. S. C. Kleene. Representation of events in nerve nets and finite automata. In Automata Studies,

pages 3–41. Princeton University Press, 1956.
23. D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular events. Inf.

and Comp., 110(2):366–390, 1994.
24. D. Kozen. Typed Kleene algebra. Technical Report TR98-1669, Computer Science Department,

Cornell University, March 1998.
25. D. Kozen. On Hoare logic and Kleene algebra with tests. ACM Trans. Comput. Log., 1(1):60–

76, July 2000.
26. D. Kozen and F. Smith. Kleene algebra with tests: Completeness and decidability. In Proc.

CSL ’96, volume 1258 of LNCS, pages 244–259. Springer, September 1996.
27. D. Krob. Complete systems of B-rational identities. TCS, 89(2):207–343, 1991.
28. Xavier Leroy. A formally verified compiler back-end. Journal of Automated Reasoning,

43(4):363–446, 2009.
29. A.R. Meyer and L. J. Stockmeyer. Word problems requiring exponential time. In Proc.

STOC ’73, pages 1–9. ACM, 1973.
30. J. Narboux. Formalisation et automatisation du raisonnement géométrique en Coq. PhD

thesis, Université Paris Sud, September 2006.
31. D. Pous. Untyping typed algebraic structures and colouring proof nets of cyclic linear logic.

Technical Report RR-7176, INRIA Rhône-Alpes, January 2010.
32. M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of

Research and Development, 3(2):114–125, 1959.
33. M. Sozeau and N. Oury. First-class type classes. In Proc. TPHOL ’08, volume 4732 of LNCS,

pages 278–293. Springer, 2008.
34. G. Struth. Calculating Church-Rosser proofs in Kleene algebra. In RelMiCS, volume 2561 of

LNCS, pages 276–290. Springer, 2001.
35. A. Tarski and S. Givant. A Formalization of Set Theory without Variables, volume 41 of

Colloquium Publications. AMS, Providence, Rhode Island, 1987.
36. K. Thompson. Regular expression search algorithm. Comm. of the ACM, 11:419–422, 1968.
37. David von Oheimb and Thomas F. Gritzner. Rall: Machine-supported proofs for relation alge-

bra. In CADE, volume 1249 of LNCS, pages 380–394. Springer, 1997.

16

http://sardes.inrialpes.fr/~braibant/atbr/
http://www.prism.uvsq.fr/~bris/tools/Automata_080708.tar.gz
http://www.prism.uvsq.fr/~bris/tools/Automata_080708.tar.gz

