Skip to main content

Abstract

We investigate how sequential decision processes can be solved, under act-state independence. We first identify a reasonable requirement that such solutions ought to satisfy under act-state independence, which we call locality. We then identify a simple necessary and sufficient algebraic condition on choice functions for locality to be satisfied. As an example, we study locality for some choice functions used in imprecise probability theory, and find that marginal extension plays a crucial role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ben-Haim, Y.: Info-Gap Decision Theory. Academic Press, London (2001)

    Google Scholar 

  2. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. The Annals of Mathematical Statistics 38, 325–339 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dubins, L.E.: Finitely additive conditional probabilities, conglomerability and disintegrations. The Annals of Probability 3(1), 89–99 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Huntley, N., Troffaes, M.C.M.: Subtree perfectness, backward induction, and normal-extensive form equivalence for single agent sequential decision making under arbitrary choice functions (submitted)

    Google Scholar 

  5. Kolmogorov, A.N.: Foundations of the Theory of Probability. Chelsea Publishing Company, New York (1950)

    Google Scholar 

  6. Miranda, E.: A survey of the theory of coherent lower previsions. International Journal of Approximate Reasoning 48(2), 628–658 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Selten, R.: Reexamination of the perfectness concept for equilibrium points in extensive games. International Journal of Game Theory 4(1), 25–55 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sen, A.: Social choice theory: A re-examination. Econometrica 45(1), 53–89 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  10. Shafer, G., Vovk, V.: Probability and Finance: It’s Only a Game! Wiley, New York (2001)

    Book  MATH  Google Scholar 

  11. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  12. Troffaes, M.C.M.: Finite approximations to coherent choice. International Journal of Approximate Reasoning 50(4), 655–665 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman & Hall, Boca Raton (1991)

    Book  MATH  Google Scholar 

  14. Walley, P.: Inferences from multinomial data: Learning about a bag of marbles. Journal of the Royal Statistical Society. Series B 58(1), 3–57 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Williams, P.M.: Notes on conditional previsions. Technical report, School of Math. and Phys. Sci., Univ. of Sussex (1975); Reprinted in International Journal of Approximate Reasoning 44(3), 366–383 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Troffaes, M.C.M., Huntley, N., Filho, R.S. (2010). Sequential Decision Processes under Act-State Independence with Arbitrary Choice Functions. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Methods. IPMU 2010. Communications in Computer and Information Science, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14055-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14055-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14054-9

  • Online ISBN: 978-3-642-14055-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics