Abstract
The present work dedicates itself to the aggregation of nonconvex data-inherent structures into fuzzy classes. A key feature of this aggregation is its conduction within a closed fuzzy classification framework, being built around a single, generic type of a convex membership function. After a short elaboration concerning this essential building block a novel automated, data-driven design strategy to aggregate complex (nonconvex) data-inherent structures is introduced. The whole aggregation process will be illustrated with the help of an example.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bocklisch, S.F.: Prozeßanalyse mit unscharfen Verfahren. Technik, Berlin (1987)
Bosc, P., Prade, H.: An introduction to the fuzzy set and possibility theory-based treatment of soft queries and uncertain or imprecise databases. In: Smets, P., Motro, A. (eds.) Uncertainty Management in Information Systems: From Needs to Solutions, pp. 285–324. Kluwer, Dordrecht (1997)
Weihs, C., Gaul, W. (eds.): Classification — the Ubiquitous Challenge: Proceedings of the 28th Annual Conference of the Gesellschaft für Klassifikation e.V., University of Dortmund, vol. 28. Springer, Heidelberg (2005)
Hempel, A.J., Bocklisch, S.F.: Parametric fuzzy modelling framework for complex data-inherent structures. In: Proceedings of IFSA-EUSFLAT 2009, pp. 885–890 (2009)
Hempel, A.J., Bocklisch, S.F.: Fuzzy pattern modelling of data inherent structures based on aggregation of data with heterogeneous fuzziness. In: Rey, G.R., Muneta, L.M. (eds.) Modelling Simulation and Optimization, ch. 28, pp. 637–655. INTECH (2010)
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31(3), 264–323 (1999)
Kwiatkowska, M., Kielan, K., Michalik, K.: A fuzzy-semiotic framework for modeling imprecision in the assessment of depression. In: Proceedings of IFSA-EUSFLAT 2009, pp. 1717–1722 (2009)
Rutkowski, L.: Flexible Neuro-fuzzy Systems: Structures, Learning and Performance Evaluation. Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, Norwell (2004)
Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hempel, AJ., Bocklisch, S.F. (2010). Fuzzy Classification of Nonconvex Data-Inherent Structures. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Methods. IPMU 2010. Communications in Computer and Information Science, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14055-6_43
Download citation
DOI: https://doi.org/10.1007/978-3-642-14055-6_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14054-9
Online ISBN: 978-3-642-14055-6
eBook Packages: Computer ScienceComputer Science (R0)