Skip to main content

Abstract

The present work dedicates itself to the aggregation of nonconvex data-inherent structures into fuzzy classes. A key feature of this aggregation is its conduction within a closed fuzzy classification framework, being built around a single, generic type of a convex membership function. After a short elaboration concerning this essential building block a novel automated, data-driven design strategy to aggregate complex (nonconvex) data-inherent structures is introduced. The whole aggregation process will be illustrated with the help of an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bocklisch, S.F.: Prozeßanalyse mit unscharfen Verfahren. Technik, Berlin (1987)

    Google Scholar 

  2. Bosc, P., Prade, H.: An introduction to the fuzzy set and possibility theory-based treatment of soft queries and uncertain or imprecise databases. In: Smets, P., Motro, A. (eds.) Uncertainty Management in Information Systems: From Needs to Solutions, pp. 285–324. Kluwer, Dordrecht (1997)

    Chapter  Google Scholar 

  3. Weihs, C., Gaul, W. (eds.): Classification — the Ubiquitous Challenge: Proceedings of the 28th Annual Conference of the Gesellschaft für Klassifikation e.V., University of Dortmund, vol. 28. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  4. Hempel, A.J., Bocklisch, S.F.: Parametric fuzzy modelling framework for complex data-inherent structures. In: Proceedings of IFSA-EUSFLAT 2009, pp. 885–890 (2009)

    Google Scholar 

  5. Hempel, A.J., Bocklisch, S.F.: Fuzzy pattern modelling of data inherent structures based on aggregation of data with heterogeneous fuzziness. In: Rey, G.R., Muneta, L.M. (eds.) Modelling Simulation and Optimization, ch. 28, pp. 637–655. INTECH (2010)

    Google Scholar 

  6. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  7. Kwiatkowska, M., Kielan, K., Michalik, K.: A fuzzy-semiotic framework for modeling imprecision in the assessment of depression. In: Proceedings of IFSA-EUSFLAT 2009, pp. 1717–1722 (2009)

    Google Scholar 

  8. Rutkowski, L.: Flexible Neuro-fuzzy Systems: Structures, Learning and Performance Evaluation. Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, Norwell (2004)

    MATH  Google Scholar 

  9. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hempel, AJ., Bocklisch, S.F. (2010). Fuzzy Classification of Nonconvex Data-Inherent Structures. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Methods. IPMU 2010. Communications in Computer and Information Science, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14055-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14055-6_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14054-9

  • Online ISBN: 978-3-642-14055-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics