Skip to main content

Abstract

In recent years the amount of digital data in the world has risen immensely. But, the more information exists, the greater is the possibility of its unwanted disclosure. Thus, the data privacy protection has become a pressing problem of the present time.

The task of individual privacy-preserving is being thoroughly studied nowadays. At the same time, the problem of statistical disclosure control for collective (or group) data is still open.

In this paper we propose an effective and relatively simple (wavelet-based) way to provide group anonymity in collective data. We also provide a real-life example to illustrate the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gantz, J.F., Reinsel, D.: As the Economy Contracts, the Digital Universe Expands. An IDC Multimedia White Paper (2009), http://www.emc.com/collateral/demos/microsites/idc-digital-universe/iview.htm

  2. Sweeney, L.: Computational Disclosure Control: A Primer on Data Privacy. Ph.D. Thesis. Massachusetts Institute of Technology, Cambridge (2001)

    Google Scholar 

  3. Aggarwal, C.C., Yu, P.S. (eds.): Privacy-Preserving Data Mining: Models and Algorithms. Springer, New York (2008)

    Google Scholar 

  4. Sweeney, L.: k-anonymity: a Model for Protecting Privacy. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10(5), 557–570 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity: Privacy Beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data 1(1) (2007)

    Google Scholar 

  6. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy Beyond k-anonymity and l-diversity. In: 23rd International Conference on Data Engineering, pp. 106–115. IEEE Computer Society, Washington (2007)

    Chapter  Google Scholar 

  7. Chertov, O., Pilipyuk, A.: Statistical Disclosure Control Methods for Microdata. In: International Symposium on Computing, Communication and Control, pp. 338–342. IACSIT, Singapore (2009)

    Google Scholar 

  8. Meyerson, A., Williams, R.: General k-anonymization is Hard. Technical Report CMU-CS-03-113, Carnegie Mellon School of Computer Science (2003)

    Google Scholar 

  9. Davydov, A.: Wavelet-analysis of the Social Processes. Sotsiologicheskie issledovaniya, 11, 89–101 (2003) (in Russian), http://www.ecsocman.edu.ru/images/pubs/2007/10/30/0000315095/012.DAVYDOV.pdf

  10. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, New York (1999)

    MATH  Google Scholar 

  11. Liu, L., Wang, J., Zhang, J.: Wavelet-based Data Perturbation for Simultaneous Privacy-Preserving and Statistics-Preserving. In: 2008 IEEE International Conference on Data Mining Workshops, pp. 27–35. IEEE Computer Society, Washington (2008)

    Chapter  Google Scholar 

  12. Strang, G., Nguyen, T.: Wavelet and Filter Banks. Wellesley-Cambridge Press, Wellesley (1997)

    Google Scholar 

  13. U.S. Census 2000. 5-Percent Public Use Microdata Sample Files, http://www.census.gov/Press-Release/www/2003/PUMS5.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chertov, O., Tavrov, D. (2010). Group Anonymity. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications. IPMU 2010. Communications in Computer and Information Science, vol 81. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14058-7_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14058-7_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14057-0

  • Online ISBN: 978-3-642-14058-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics