Abstract
Palmprint based Identification is gaining popularity due to its traits like user acceptance, reliability and ease of acquisition. The paper presents a recognition method which extorts textural information obtainable from the palmprint, utilizing different filters of wavelet transform. Palmprint center has been computed using the chessboard metric of Distance Transform whereas the strictures of best fitting ellipse help resolve the alignment of the palmprint. Region Of Interest of 256×256 pixels is clipped around the center. Next, normalized directional energy components of the decomposed subband outputs are computed for each block. Biorthogonal, Symlet, Discrete Meyer, Coiflet, Daubechies and Mexican hat wavelets are investigated on 500 palmprints acquired from 50 users with 10 samples each for their individual and concatenated combined features vectors. The performance has been analyzed using Euclidean classifier. An Equal Error Rate (EER) of 0.0217 and Genuine Acceptance Rate (GAR) of 97.12% with combined feature vector formed by Bior3.9, Sym8 and Dmeyer wavelets depict better performance over individual wavelet transforms and combination of coiflet, Daubechies and Mexican hat wavelets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Roberts, C.: Biometric-Palm and Hand. Centre for Critical Infrastructure Protection (May 2006), http://www.ccip.govt.nz/newsroom/information-notes/2006/biometrics-technologies-palmhand.pdf
Shu, W., Zhang, D.: Palmprint Verification: An implementation of Biometric Technology. In: International Conference on Pattern Recognition, ICPR, vol. I, pp. 219–221 (1998)
Wu, X., Zhang, D., Wang, K.: Palm Line Extraction and Matching for Personal authentication. IEEE Trans. Systems, Man, and Cybernetics-Part A: Systems and Humans 36(5), 978–987 (2006)
Kumar, A., Wong, D.C.M., Shen, H.C., Jain, A.K.: Personal Verification using Palmprint and Hand Geometry Biometric. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688. Springer, Heidelberg (2003)
Ekinci, M., Aykut, M.: Palmprint Recognition by Applying Wavelet Subband Representation and Kernel PCA. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 628–642. Springer, Heidelberg (2007)
Tao, J., Jiang, W., Gao, Z., Chen, S., Wang, C.: Palmprint Recognition Based on Improved 2DPCA. In: Shi, Z.-Z., Sadananda, R. (eds.) PRIMA 2006. LNCS (LNAI), vol. 4088, pp. 455–462. Springer, Heidelberg (2006)
Shang, L., Huang, D.-S., Du, J.-X., Huang, Z.-K.: Palmprint Recognition Using ICA Based on Winner-Take-All Network and Radial Basis Probabilistic Neural Network. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3972, pp. 216–221. Springer, Heidelberg (2006)
Connie, T., Teoh, A., Goh, M., Ngo, D.: Palmprint Recognition with PCA and ICA. In: Image and Vision Computing, New Zealand 2003, Palmerston North, New Zealand, vol. 3, pp. 232–227 (2003)
Lu, G., Zhang, D., Wang, K.Q.: Palmprint recognition using eigenpalms features. Pattern Recognition Letters 24(9-10), 1473–1477 (2003)
Mumtaz, M., Masoor, A.B., Masood, H.: Directional Energy Based Palmprint Identification using Non Subsampled Contourlet Transform. In: IEEE International Conference on Image Procesing, ICIP 2009, Egypt (2009)
Kumar, A., Zhang, D.: Personal Recognition Using Hand Shape and Texture. IEEE Trans. Image Processing 15, 2454–2461 (2006)
Zhou, X., Peng, Y., Yang, M.: Palmprint Recognition Using Wavelet and Support Vector Machines. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS (LNAI), vol. 4099, pp. 385–393. Springer, Heidelberg (2006)
Zhang, L., Zhang, D.: Characterization of Palmprints by Wavelet Signatures via Directional Context Modeling. IEEE Trans. on SMC-B 34(3), 1335–1347 (2004)
Zhang, D., kong, W.-k., You, J., Wong, M.: Online Palmprint Identification. IEEE Trans. Pattern Analysis and Machine Intelligence 25(9), 1041–1050 (2003)
Li, W., Zhang, D., Xu, Z.: Palmprint identification by Fourier transform. International Journal of Pattern Recognition and Artifical Intelligence 16(4), 417–432 (2002)
Kumar, A., Shen, H.C.: Recognition of Palmprints Using Wavelet-based Features. In: Proc. Intl. Conf. Sys., Cybern., SCI 2002, Orlando, Florida (2002)
Masood, H., Mumtaz, M., Butt, M.A.A., Mansoor, A.B., Khan, S.A.: Wavelet based Palmprint Authentication System. In: IEEE International Symposium on Biometrics and Security System, ISBAST 2008, Islamabad, Pakistan, April 23-24 (2008)
Zhang, D., Lu, G., Kong, A.W.-K., Wong, M.: A Novel Personal Authentication System Using Palmprint Technology. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 40–49. Springer, Heidelberg (2005)
Masood, H., Asim, M., Mumtaz, M., Mansoor, A.B.: Combined Contourlet and Non Subsampled Contourlet Transform based Approach for Personal Identification using Palmprint. In: Digital Image Computing: Techniques and Applications, DICTA 2009, Melbourne, Australia (December 2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mansoor, A.B., Masood, H., Mumtaz, M., Shabbir, S., Khan, S.A. (2010). An Evaluation of Wavelet Kernels for Palmprint Based Recognition. In: Perales, F.J., Fisher, R.B. (eds) Articulated Motion and Deformable Objects. AMDO 2010. Lecture Notes in Computer Science, vol 6169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14061-7_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-14061-7_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14060-0
Online ISBN: 978-3-642-14061-7
eBook Packages: Computer ScienceComputer Science (R0)