Skip to main content

An Evaluation of Wavelet Kernels for Palmprint Based Recognition

  • Conference paper
Articulated Motion and Deformable Objects (AMDO 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6169))

Included in the following conference series:

  • 760 Accesses

Abstract

Palmprint based Identification is gaining popularity due to its traits like user acceptance, reliability and ease of acquisition. The paper presents a recognition method which extorts textural information obtainable from the palmprint, utilizing different filters of wavelet transform. Palmprint center has been computed using the chessboard metric of Distance Transform whereas the strictures of best fitting ellipse help resolve the alignment of the palmprint. Region Of Interest of 256×256 pixels is clipped around the center. Next, normalized directional energy components of the decomposed subband outputs are computed for each block. Biorthogonal, Symlet, Discrete Meyer, Coiflet, Daubechies and Mexican hat wavelets are investigated on 500 palmprints acquired from 50 users with 10 samples each for their individual and concatenated combined features vectors. The performance has been analyzed using Euclidean classifier. An Equal Error Rate (EER) of 0.0217 and Genuine Acceptance Rate (GAR) of 97.12% with combined feature vector formed by Bior3.9, Sym8 and Dmeyer wavelets depict better performance over individual wavelet transforms and combination of coiflet, Daubechies and Mexican hat wavelets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Roberts, C.: Biometric-Palm and Hand. Centre for Critical Infrastructure Protection (May 2006), http://www.ccip.govt.nz/newsroom/information-notes/2006/biometrics-technologies-palmhand.pdf

  2. Shu, W., Zhang, D.: Palmprint Verification: An implementation of Biometric Technology. In: International Conference on Pattern Recognition, ICPR, vol. I, pp. 219–221 (1998)

    Google Scholar 

  3. Wu, X., Zhang, D., Wang, K.: Palm Line Extraction and Matching for Personal authentication. IEEE Trans. Systems, Man, and Cybernetics-Part A: Systems and Humans 36(5), 978–987 (2006)

    Article  Google Scholar 

  4. Kumar, A., Wong, D.C.M., Shen, H.C., Jain, A.K.: Personal Verification using Palmprint and Hand Geometry Biometric. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688. Springer, Heidelberg (2003)

    Google Scholar 

  5. Ekinci, M., Aykut, M.: Palmprint Recognition by Applying Wavelet Subband Representation and Kernel PCA. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 628–642. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Tao, J., Jiang, W., Gao, Z., Chen, S., Wang, C.: Palmprint Recognition Based on Improved 2DPCA. In: Shi, Z.-Z., Sadananda, R. (eds.) PRIMA 2006. LNCS (LNAI), vol. 4088, pp. 455–462. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Shang, L., Huang, D.-S., Du, J.-X., Huang, Z.-K.: Palmprint Recognition Using ICA Based on Winner-Take-All Network and Radial Basis Probabilistic Neural Network. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3972, pp. 216–221. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Connie, T., Teoh, A., Goh, M., Ngo, D.: Palmprint Recognition with PCA and ICA. In: Image and Vision Computing, New Zealand 2003, Palmerston North, New Zealand, vol. 3, pp. 232–227 (2003)

    Google Scholar 

  9. Lu, G., Zhang, D., Wang, K.Q.: Palmprint recognition using eigenpalms features. Pattern Recognition Letters 24(9-10), 1473–1477 (2003)

    Article  MATH  Google Scholar 

  10. Mumtaz, M., Masoor, A.B., Masood, H.: Directional Energy Based Palmprint Identification using Non Subsampled Contourlet Transform. In: IEEE International Conference on Image Procesing, ICIP 2009, Egypt (2009)

    Google Scholar 

  11. Kumar, A., Zhang, D.: Personal Recognition Using Hand Shape and Texture. IEEE Trans. Image Processing 15, 2454–2461 (2006)

    Article  Google Scholar 

  12. Zhou, X., Peng, Y., Yang, M.: Palmprint Recognition Using Wavelet and Support Vector Machines. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS (LNAI), vol. 4099, pp. 385–393. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Zhang, L., Zhang, D.: Characterization of Palmprints by Wavelet Signatures via Directional Context Modeling. IEEE Trans. on SMC-B 34(3), 1335–1347 (2004)

    Google Scholar 

  14. Zhang, D., kong, W.-k., You, J., Wong, M.: Online Palmprint Identification. IEEE Trans. Pattern Analysis and Machine Intelligence 25(9), 1041–1050 (2003)

    Article  Google Scholar 

  15. Li, W., Zhang, D., Xu, Z.: Palmprint identification by Fourier transform. International Journal of Pattern Recognition and Artifical Intelligence 16(4), 417–432 (2002)

    Article  Google Scholar 

  16. Kumar, A., Shen, H.C.: Recognition of Palmprints Using Wavelet-based Features. In: Proc. Intl. Conf. Sys., Cybern., SCI 2002, Orlando, Florida (2002)

    Google Scholar 

  17. Masood, H., Mumtaz, M., Butt, M.A.A., Mansoor, A.B., Khan, S.A.: Wavelet based Palmprint Authentication System. In: IEEE International Symposium on Biometrics and Security System, ISBAST 2008, Islamabad, Pakistan, April 23-24 (2008)

    Google Scholar 

  18. Zhang, D., Lu, G., Kong, A.W.-K., Wong, M.: A Novel Personal Authentication System Using Palmprint Technology. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 40–49. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Masood, H., Asim, M., Mumtaz, M., Mansoor, A.B.: Combined Contourlet and Non Subsampled Contourlet Transform based Approach for Personal Identification using Palmprint. In: Digital Image Computing: Techniques and Applications, DICTA 2009, Melbourne, Australia (December 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mansoor, A.B., Masood, H., Mumtaz, M., Shabbir, S., Khan, S.A. (2010). An Evaluation of Wavelet Kernels for Palmprint Based Recognition. In: Perales, F.J., Fisher, R.B. (eds) Articulated Motion and Deformable Objects. AMDO 2010. Lecture Notes in Computer Science, vol 6169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14061-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14061-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14060-0

  • Online ISBN: 978-3-642-14061-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics