Skip to main content

A Proposal for Local and Global Human Activities Identification

  • Conference paper
Articulated Motion and Deformable Objects (AMDO 2010)

Abstract

There are a number of solutions to automate the monotonous task of looking at a monitor to find suspicious behaviors in video surveillance scenarios. Detecting strange objects and intruders, or tracking people and objects, is essential for surveillance and safety in crowded environments. The present work deals with the idea of jointly modeling simple and complex behaviors to report local and global human activities in natural scenes. In order to validate our proposal we have performed some tests with some CAVIAR test cases. In this paper we show some relevant results for some study cases related to visual surveillance, namely “speed detection”, “position and direction analysis”, and “possible cashpoint holdup detection”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amer, A., Dubois, E., Mitiche, A.: Rule-based real-time detection of context-independent events in video shots. Real-Time Imaging 11(33), 244–256 (2005)

    Article  Google Scholar 

  2. Andrade, E.L., Blunsden, S., Fisher, R.B.: Modelling crowd scenes for event detection. In: 18th International Conference on Pattern Recognition, vol. 1, pp. 175–178 (2006)

    Google Scholar 

  3. Blunsden, S., Fisher, R.B.: Pre-fight detection - Classification of fighting situations using hierarchical AdaBoost. In: Fourth International Conference on Computer Vision Theory and Applications, vol. 2, pp. 303–308 (2009)

    Google Scholar 

  4. Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. IEEE PAMI 23(3), 257–267 (2001)

    Article  Google Scholar 

  5. Buxton, H., Gong, S.: Visual surveillance in a dynamic and uncertain world. Artificial Intelligence 78(1), 431–459 (1995)

    Article  Google Scholar 

  6. Fernández-Caballero, A., López, M.T., Saiz-Valverde, S.: Dynamic Stereoscopic Selective Visual Attention (DSSVA): Integrating motion and shape with depth in video segmentation. ESWA 34(2), 1394–1402 (2008)

    Google Scholar 

  7. Fernández-Caballero, A., Gómez, F.J., López-López, J.: Road-traffic monitoring by knowledge-driven static and dynamic image analysis. ESWA 35(3), 701–719 (2008)

    Google Scholar 

  8. Galata, A., Johnson, N., Hogg, D.: Learning variable-length Markov models of behavior. CVIU 81(3), 398–413 (2001)

    MATH  Google Scholar 

  9. Gascueña, J.M., Fernández-Caballero, A.: On the use of agent technology in intelligent, multi-sensory and distributed surveillance. In: KER (2009) (in press)

    Google Scholar 

  10. Gavrila, D.M.: The visual analysis of human movement: a survey. CVIU 73(1), 82–98 (1999)

    MATH  Google Scholar 

  11. Hongeng, S., Nevatia, R., Bremond, F.: Video-based event recognition: activity representation and probabilistic recognition methods. CVIU 96(2), 129–162 (2004)

    Google Scholar 

  12. Huang, K., Wang, S., Tan, T., Maybank, S.: Human behavior analysis based on a new motion descriptor. IEEE CirSysVideo 19(12), 1830–1840 (2009)

    Google Scholar 

  13. Ivanov, Y.A., Bobick, A.F.: Recognition of visual activities and interactions by stochastic parsing. IEEE PAMI 22(8), 852–872 (2000)

    Article  Google Scholar 

  14. Laptev, I., Pérez, P.: Retrieving actions in movies. In: International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  15. Lavee, G., Rivlin, E., Rudzsky, M.: Understanding video events: a survey of methods for automatic interpretation of semantic occurrences in video. IEEE SMC-C 39(5), 489–504 (2009)

    Google Scholar 

  16. Loccoz, N.M., Bremond, F., Thonnat, M.: Recurrent Bayesian network for the recognition of human behaviors from video. In: 3rd International Conference on Computer Vision Systems, pp. 68–77 (2003)

    Google Scholar 

  17. López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Dynamic visual attention model in image sequences. IMAVIS 25(5), 597–613 (2007)

    Google Scholar 

  18. López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Motion features to enhance scene segmentation in active visual attention. Pattern Recognition Letters 27(5), 469–478 (2006)

    Article  Google Scholar 

  19. López, M.T., Fernández-Caballero, A., Mira, J., Delgado, A.E., Fernández, M.A.: Algorithmic lateral inhibition method in dynamic and selective visual attention task: Application to moving objects detection and labelling. ESWA 31(3), 570–594 (2006)

    Google Scholar 

  20. López-Valles, J.M., Fernández, M.A., Fernández-Caballero, A.: Stereovision depth analysis by two-dimensional motion charge memories. Pattern Recognition Letters 28(1), 20–30 (2007)

    Article  Google Scholar 

  21. Moreno-Garcia, J., Rodriguez-Benitez, L., Fernández-Caballero, A., López, M.T.: Video sequence motion tracking by fuzzification techniques. ASOC 10(1), 318–331 (2010)

    Google Scholar 

  22. Natarajan, P., Nevatia, R.: View and scale invariant action recognition using multiview shape-flow models. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  23. Neumann, B., Möller, R.: On scene interpretation with description logics. IMAVIS 26(1), 82–101 (2008)

    Google Scholar 

  24. Oliver, N.M., Horvitz, E.: A comparison of HMMs and dynamic Bayesian networks for recognizing office activities. User Modeling, 199-209 (2005)

    Google Scholar 

  25. Oliver, N.M., Rosario, B., Pentland, A.P.: A Bayesian computer system for modeling human interactions. IEEE PAMI 22(8), 831–843 (2000)

    Article  Google Scholar 

  26. Shechtman, E., Irani, M.: Matching local self-similarities across images and videos. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  27. Tran, S.D., Davis, L.S.: Event modeling and recognition using Markov logic networks. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 610–623. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. Ulusoy, I., Bishop, C.M.: Generative versus discriminative methods for object recognition. In: The 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 258–265 (2005)

    Google Scholar 

  29. Wang, X., Ma, X., Grimson, W.E.L.: Unsupervised activity perception in crowded and complicated scenes using hierarchical Bayesian models. IEEE PAMI 31(3), 539–555 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernández-Caballero, A., Castillo, J.C., Rodríguez-Sánchez, J.M. (2010). A Proposal for Local and Global Human Activities Identification. In: Perales, F.J., Fisher, R.B. (eds) Articulated Motion and Deformable Objects. AMDO 2010. Lecture Notes in Computer Science, vol 6169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14061-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14061-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14060-0

  • Online ISBN: 978-3-642-14061-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics