Abstract
We present a novel rehabilitation device for forearm/wrist and grasp therapy of a neurologically injured human arm and hand. Emphasizing the importance of coordinated movements of the wrist and hand while performing activities of daily living (ADL) tasks, the device is designed to assist abduction/adduction and palmar/dorsal flexion of the wrist and pronation/supination of the forearm, concurrently with grasping and releasing movements of hand. Thanks to its modular, interchangeable end-effectors, the device supports ADL exercises, such as door opening. It can also be used as a measurement device, to characterize the range of motion and the isometric strength of the injured forearm/wrist and hand. Usability studies have been conducted and accuracy of the measurements provided with the device has been characterized.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
WHO, http://www.who.int/mediacentre/news/releases/2004/pr68/en/
Takahashi, C., Der-Yeghiaian, L., Le, V., Cramer, S.: A robotic device for hand motor therapy after stroke. In: IEEE International Conference on Rehabilitation and Robotics, pp. 17–20 (2005)
Frisoli, A., Rocchi, F., Marcheschi, S., Dettori, A., Salsedo, F., Bergamasco, M.: A new force-feedback arm exoskeleton for haptic interaction in virtual environments. In: IEEE Eurohaptics, pp. 195–201 (2005)
Palazzolo, J., Ferraro, M., Krebs, H., Lynch, D., Volpe, B., Hogan, N.: Stochastic estimation of arm mechanical impedance during robotic stroke rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 15(1), 94–103 (2007)
Furusho, J., Kikuchi, T., Oda, K., Ohyama, Y., Morita, T., Shichi, N., Jin, Y., Inoue, A.: A 6-dof rehabilitation support system for upper limbs including wrists “robotherapist” with physical therapy. In: IEEE International Conference on Rehabilitation Robotics, pp. 304–309 (2007)
Loureiro, R., Harwin, W.: Reach and grasp therapy: Design and control of a 9-dof robotic neuro-rehabilitation system. In: IEEE International Conference on Rehabilitation Robotics, pp. 757–763 (2007)
Mrad, C., Kawasaki, H., Takai, J., Tanaka, Y., Mouri, T.: Development of a multifingered robotic human upper limb as an inverse haptic interface. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 4 (2002)
Dovat, L., Lambercy, O., Ruffieux, Y., Chapuis, D., Gassert, R., Bleuler, H., Teo, C., Burdet, E.: A haptic knob for rehabilitation of stroke patients. In: IEEE International Conference on Intelligent Robots and Systems, pp. 977–982 (2006)
Unal, R., Patoglu, V.: Optimal dimensional synthesis of force feedback lower arm exoskeletons. In: IEEE International Conference on Biomedical Robotics and Biomechatronics, pp. 329–334 (2008)
Ertas, I., Hocaoglu, E., Barkana, D., Patoglu, V.: Finger exoskeleton for treatment of tendon injuries. In: IEEE International Conference on Rehabilitation Robotics, pp. 194–201 (2009)
Erdogan, A., Satici, A., Patoglu, V.: Design of a reconfigurable force feedback ankle exoskeleton for physical therapy. In: ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, pp. 400–408 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ertas, I.H., Patoglu, V. (2010). A Multi-functional Rehabilitation Device to Assist Forearm/Wrist and Grasp Therapies. In: Kappers, A.M.L., van Erp, J.B.F., Bergmann Tiest, W.M., van der Helm, F.C.T. (eds) Haptics: Generating and Perceiving Tangible Sensations. EuroHaptics 2010. Lecture Notes in Computer Science, vol 6192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14075-4_41
Download citation
DOI: https://doi.org/10.1007/978-3-642-14075-4_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14074-7
Online ISBN: 978-3-642-14075-4
eBook Packages: Computer ScienceComputer Science (R0)