
ar
X

iv
:1

00
5.

09
50

v1
 [

cs
.D

L
]

 6
 M

ay
 2

01
0

On Duplication in Mathematical Repositories ⋆

Adam Grabowski1 and Christoph Schwarzweller2

1 Institute of Mathematics, University of Bia lystok
ul. Akademicka 2, 15-267 Bia lystok, Poland

adam@math.uwb.edu.pl
2 Department of Computer Science, University of Gdańsk

ul. Wita Stwosza 57, 80-952 Gdańsk, Poland
schwarzw@inf.ug.edu.pl

Abstract. Building a repository of proof-checked mathematical knowl-
edge is without any doubt a lot of work, and besides the actual formal-
ization process there also is the task of maintaining the repository. Thus
it seems obvious to keep a repsoitory as small as possible, in particular
each piece of mathematical knowledge should be formalized only once.

In this paper, however, we claim that it might be reasonable or even nec-
essary to duplicate knowledge in a mathematical repository. We analyze
different situations and reasons for doing so and provide a number of
examples supporting our thesis.

1 Introduction

Mathematical knowledge management aims at providing both tools and infra-
structure supporting the organization, development, and also teaching of math-
ematics using modern techniques provided by computers. Consequently, large
repositories of mathematical knowledge are of major interest because they pro-
vide users with a data base of — verified — mathematical knowledge. We empha-
size the fact that a repository should contain verified knowledge only together
with the corresponding proofs. We believe that (machine-checked or -checkable)
proofs necessarily belong to each theorem and therefore are an essential part of
a repository.

However, mathematical repositories should be more than collections of the-
orems and their proofs accomplished by a prover or proof checker. The overall
goal here is not only stating and proving a theorem — though this remains
an important and challenging part — but also presenting definitions and theo-
rems so that the “natural” mathematical buildup remains visible. Theories and
their interconnections should be available, so that the further development of
the repository can be based upon these. Being not trivial as such, this becomes
even harder to assure for an open repository with a large number of authors.

In this paper we deal with yet another organizational aspect of building math-
ematical repositories: the duplication of knowledge, by which we mean that a

⋆ The final publication of this paper is available at www.springerlink.com.

http://arxiv.org/abs/1005.0950v1

2 Adam Grabowski and Christoph Schwarzweller

repository includes redundant knowledge. At first glance this may look inaccept-
able or at least unnecessary. Why should one include — and hence formalize —
the same thing more than once? A closer inspection, however, shows that math-
ematical redundance may occur in different non-trivial facets: Different proofs
of a theorem may exist or different versions of a theorem formulated in a dif-
ferent context. Sometimes we even have different representations of the same
mathematical object serving for different purposes.

From the mathematical point of view this is not only harmless but also de-
sirable; it is part of the mathematical progress that theorems and definitions
change and evolve. In mathematical repositories, however, each duplication of
knowledge causes an additional amount of work. In this paper we analyze miscel-
lanous situations and reasons why there could — and should — be at least some
redundance in mathematical repositories. These situations range from the above
mentioned duplication of proofs, theorems and representations to the problem of
generalizing knowledge. Even techical reasons due to the progress of a repository
may lead to duplication of knowledge.

2 Different Proofs of a Theorem

The Chinese Remainder Theorem is a result about congruences over the integers.
It states that an integer u can be completely described by the sequence of its
remainders — if the number of remainders is big enough. The “standard” version
of the theorem reads as follows.

Theorem 1. Let m1, m2, . . . ,mr be positive integers such that mi and mj

are relatively prime for i 6= j. Let m = m1m2 · · ·mr and let u1, u2, . . . , ur be
integers. Then there exists exactly one integer u with

0 ≤ u < m and u ≡ ui mod mi for all 1 ≤ i ≤ r. ⋄

In the following we present three different proofs of the theorem and discuss
their relevance to be included in mathematical repositories. It is very easy to
show, that there exists at most one such integer u; in the following proofs we
therefore focus on proving the existence of u. The proofs are taken from [Knu97].

First proof: Suppose integer u runs through the m values 0 ≤ u < m. Then
(u mod m1, . . . , u mod mr) also runs through m different values, because the
system of congruences has at most one solution. Because there are exactly
m1m2 · · ·mr = m different tuples (v1, . . . , vr) with 0 ≤ vi < mi, every tuple oc-
curs exactly once, and hence for one of those we have (u mod m1, . . . , u mod mr)
= (u1, . . . , ur). ⋄

This proof is pretty elegant and uses a rather obvious variant of the pigeon
hole principle: If we pack m items without repetition to m buckets, then we must
have exactly one item in each bucket. It is therefore valuable to include this proof

On Duplication in Mathematical Repositories 3

in a repository for didactic or aesthetic reasons. On the other hand, formaliza-
tion of the proof is not necessarilly straightforward. One has to argue about the
number of different r-tuples and, more importantly, to show that there exists a
bijecton between the set of r-tuples and the non-negative integers smaller than
m. Another disadvantage is that the proof is non-constructive, so that it gives
no hints to find the value of u — besides the rather valueless “Try and check all
possibilities, one will fit”. This is even more disturbing, because a constructive
proof can easily be given:

Second proof: We can find integers Mi for 1 ≤ i ≤ r with

Mi ≡ 1 mod mi and Mj ≡ 0 mod mi for j 6= i.

Because mi and m/mi are relatively prime, we can take for example

Mi = (m/mi)
ϕ(mi),

where ϕ denotes the Euler function. Now,

u = (u1M1 + u2M2 + · · ·+ urMr) mod m

has the desired properties. ⋄

This proof constructs r constants Mi with which the sought-after u can easily
be computed. It therefore, in some sense, contains more information than the
first proof, that should be contained in the repository also. The proof uses far
more evolved mathematical notations — namely Euler’s function — and for that
reason may also be considered more interesting than the first one. Formalization
requires the use of Euler’s function3 which may cause some preliminary work.
From a computer science point of view the proof has two disadvantages. First,
it is not easy to compute Euler’s function; in general one has to decompose the
moduli mi into their prime factors. Second, the Mi being multiples of m/mi are
really big numbers, so that a better method for computing u is highly desirable.
Such a method has indeed been found by H. Garner, which gives a third proof
of Theorem 1:

Third proof: Because we have gcd(mi,mj) = 1 for i 6= j we can find integers
cij for 1 ≤ i < j ≤ r with

cijmi ≡ 1 mod mj

by applying the extended Euclidean algorithm to mi and mj . Now taking

v1 := u1 mod m1

v2 := (u2 − v1)c12 mod m2

v3 := ((u3 − v1)c13 − v2)c23 mod m3

...
vr := (. . . ((ur − v1)c1r − v2)c2r − · · · − vr−1)c(r−1)r mod mr

3 Actually a mild modification of the proof works without Euler’s function.

4 Adam Grabowski and Christoph Schwarzweller

and then setting

u := vrmr−1 · · ·m2m1 + · · ·+ v3m2m1 + v2m1 + v1

we get the desired integer u. ⋄

The proof uses
(

r

2

)

constants cij that can be computed with the extended
Euclidean algorithm because we have gcd(mi,mj) = 1 for i 6= j. When con-
structing the vi the application of the modulo operation in each step ensures
that the occurring values remain small. The proof is far more technical than
the others in constructing

(

r

2

)

+ r additional constants, the vi in addition being
recursively defined. On the other hand, however, this proof includes an efficient
method to compute the integer u from Theorem 1.

We see that the question which proof of a theorem should be formalized,
does not only depend on the hardness of the formalization in a given system.
Both elegance and the amount of information are issues that can be taken into
consideration — this may even result in formalizing more than one proof.

3 Different versions of Theorems

There are quite a number of reasons why different versions of the same theorem
exist and may be included in mathematical repositories. Besides mathematical
issues we also identified reasons justified by formalization issues or the develop-
ment of repositories itself. For illustration we again use the CRT as an example.

3.1 Restricted Versions

Theorems are not always shown with a proof assistant to be included in a repos-
itory in the first place: Maybe the main goal is to illustrate or test a new im-
plemented proof technique or just to show that this special kind of mathematics
can be handled within the particular system. In this case it is often sufficient —
or simply easier — to prove a weaker or restricted version of the original theorem
from the literature.

In Hol Light [Har10], for example, we find the following theorem.

INTEGER_RULE

’!a b u v:int. coprime(a,b) ==>

?x. (x == u) (mod a) /\ (x == v) (mod b)’;

This is a version of the Chinese Remainder Theorem 1 stating that in case of two
moduli a and b only there exists a simultaneous solution x of the congruences.
Similar versions have been shown with hol98 ([Hur03]), the Coq proof assistant
([Mén10]) or Rewrite Rule Laboratory ([ZH92]).

From the viewpoint of mathematical repositories it is of course desirable to
have included the full version of the theorem also. Can we, however, in this case
easily set the restricted version aside? Note that the above theorem in Hol Light

On Duplication in Mathematical Repositories 5

also serves as a rule for proving divisibility properties of the integers. Erasing
the restricted version then means that the full version has to be used instead.
It is hardly foreseeable whether this will work for all other proofs relying on
the restricted version. So, probably sometimes both the restricted and the full
version belong to the repsository.

3.2 Different Mathematical Versions

The most natural reason for different versions of theorems is that mathematicians
often look at the same issue from different perspectives. The CRT presented in
Section 2 deals with congruences over the integers: it states the existence of an
integer solving a given system of congruences. Looking from a more algebraic
point of view we see that the moduli mi can be interpreted as describing the
residue class rings Zmi

. The existence and uniqueness of the integer u from the
CRT then gives rise to an isomorphism between rings [GG99]:

Theorem 2. Let m1, m2, . . . ,mr be positive integers such that mi and mj are
relatively prime for i 6= j and let m = m1 m2 · · ·mr. Then we have the ring
isomorphism

Zm
∼= Zm0

× · · · × Zmr
. ⋄

This version of the CRT has been formalized in hol98 [Hur03]. Here we find a
two-moduli version that in addition is restricted to multiplicative groups. Tech-
nically, the theorem states that for relative prime moduli p and q the function
λx.(x mod p, x mod q) is a group isomorphism between Zpq and Zp ×Zq.

⊢ ∀p, q.
1 < p ∧ 1 < q ∧ gcd p q = 1 ⇒
(λx.(x mod p, x mod q)) ∈
group iso (mult group pq)
(prod group (mult group p) (mult group q))

Note that, in contrast to Theorem 2, the isomorphism is part of the theorem
itself and not hidden in the proof.

It is not easy to decide which version of the CRT may be better suited for
inclusion in a mathematical repository. Theorem 2 looks more elegant and in
some sense contains more information than Theorem 1: It does not state the ex-
istence of a special integer, but the equality of two mathematical structures. The
proof of Theorem 2 uses the homomorphism theorem for rings and is therefore
interesting for didactic reasons, too. On the other hand, Theorem 1 uses inte-
gers and congruences only, so that one needs less preliminaries to understand it.
Theorem 1 and its proof also give more information than theorem 2 concerning
computational issues4 — at least if not the first proof only has been formalized.

4 To apply the homomorphism theorem in the proof of Theorem 2 one needs to show
that the canonical homomorphism is a surjection with kernel (m). This sometimes
is done by employing the extended Euclidean algorithm, so that this proof gives an
algorithm, too.

6 Adam Grabowski and Christoph Schwarzweller

3.3 Different Technical Versions

Another reason for different versions of a theorem may be originated in the
mathematical repository itself. Here again open repositories play an important
role: Different authors, hence different styles of formalizing and different kinds
of mathematical understanding and preferences meet in one repository. So, it
may happen that two authors formalize the same (mathematical) theorem, but
choose a different formulation and/or a different proof. We call this technical
versions.

Especially in evolving systems such versions may radically differ just because
the system’s language improved over the years. In the Mizar Mathematical Li-
brary, for example, we find the following CRT [Sch08]

theorem

for u being integer-yielding FinSequence,

m being CR_Sequence st len u = len m

ex z being Integer

st 0 <= z & z < Product(m) & for i being natural number

st i in dom u holds z,u.i are_congruent_mod m.i;

Here, a CR_Sequence is a sequence og natural numbers, which are pairwise
relative prime. Note that the formulation f the CRT is very close to the texbook
version theorem 1.

In another Mizar article [Kon97], however, we find a different formulation of
the CRT:

theorem :: WSIERP_1:44

len fp>=2 &

(for b,c st b in dom fp & c in dom fp & b<>c holds (fp.b gcd fp.c)=1)

implies for fr st len fr=len fp holds ex fr1 st (len fr1=len fp &

for b st b in dom fp holds (fp.b)*(fr1.b)+(fr.b)=(fp.1)*(fr1.1)+(fr.1));

In this version no attributes are used. The condition that the mi are pairwise
relatively prime is here stated explicitly using the gcd functor for natural num-
bers. Also the congruences are described arithmetically: u ≡ ui mod mi means
that there exists a xi such that u = ui + xi ∗mi, so the theorem basically states
the existence of x1, . . . , xr instead of u.

Since the article has been written more than 10 years ago, a reason for this
technical formulation is hard to find. It may be that at the time of writing
Mizar’s attribute mechanism was not so far developed as today, i.e. the author
reformulated the theorem in order to get it formalized at all. Another explanation
for this second technical version might be that the author when formalizing
the CRT already had in mind a particular application and therefore chose a
formulation better suited to prove the application.

In the Coq Proof Assistant [Coq10] the CRT has been proved for a bit vector
representation of the integers [Mén10], though as a restricted version of Theorem
1 with two moduli a and b.

On Duplication in Mathematical Repositories 7

Theorem chinese_remaindering_theorem :

forall a b x y : Z,

gcdZ a b = 1%Z -> {z : Z | congruentZ z x a /\ congruentZ z y b}.

In fact this theorem and its proof are the result of rewriting a former proof of
the CRT in Coq. So in Coq there exist two versions of the CRT — though the
former one has been declared obsolete.

We see that in general the way authors use open systems to formalize theo-
rems has a crucial impact on the formulation, that is on the technical version of
a theorem, and may lead to different versions of the same theorem. Removing
one — usually the older — version is a dangerous task: In large repositories it is
not clear whether all proofs relying on the deleted version can be easily changed
to work with the other one. So often both versions reamin in the repository.

4 Abstract and Concrete Mathematics

Practically every mathematical repository has a notion of groups, rings, fields
and many more abstract structures. The advantage is obvious: A theorem shown
to hold in an abstract structure is also true in every concrete structure of this
type. This can help to kepp a repository small: Even if concrete structures are
defined there is no need to repeat theorems following from the abstract structure.
If necessary in a proof for a concrete structure one can just use the theorem
proved for the abstract structure.

Nevertheless authors tend to prove theorems again for the concrete case. We
can observe this phenomenon in the Mizar Mathematical Library (MML). There
we find, for example, the following theorem about groups.

theorem

for V being Group

for v being Element of V holds v - v = 0.V;

For a number of conrete groups (rings or fields) this theroem, however, has
been proved and stored in MML again, among them complex numbers and poly-
nomials.

theorem

for a being complex number holds a - a = 0;

theorem

for L be add-associative right_zeroed right_complementable

(non empty addLoopStr)

for p be Polynomial of L holds p - p = 0_.(L);

One reason might be that authors are not aware of the abstract theorems
they can use and therefore think that it is necessary to include theorems in the
concrete case. This might be especially true, if authors work on applications
rather than on ”core” mathematics. On the other hand it might just be more

8 Adam Grabowski and Christoph Schwarzweller

comfortable for authors to work solely in the concrete structure rather than to
switch between concrete and abstract structures while proving theorems in a
concrete structure.

Constructing new structures from already existent ones sometimes causes
a similar problem: Shall we formalize a more concrete or a more abstract con-
struction? Multivariate polynomials, for example, can be recursively constructed
from univariate polynomials using R[X,Y] ∼= (R[X])[Y]; or more concrete as
functions from Terms in X and Y into the ring R. Which version is better suited
for mathematical repositories? Hard to say, from a mathematical point of view
the first version is the more interesting construction. The second one, however,
seems more intuitive and may be more convinient to apply in other areas where
polynomials are used. So, it might be reasonable to include both constructions
in a repository. In this case, however, theorems about polynomials will duplicate
also.

We close this section with another example: rational functions. Rational func-
tions can be constructed as pairs of polynomials or as the completion K(X) of
the polynomial ring K[X]. As in the case of multivariate polynomials both con-
structions have its right in its own, so again both may be included in a repository.
Note that this eventually might result in another (two) concrete version(s) of the
theorem about groups from above, e.g.

theorem

for L being Field

for z being Rational_Function of L

holds z - [0_.(L),1_.(L)] = z;

5 Representational Issues

In the majority of cases it does not play a major role how mathematical ob-
jects are represented in repositories. Whether the real numbers, for example, are
introduced axiomatically or are constructed as the Dedekind-completion of the
rational numbers, has actually no influence on later formalizations using real
numbers. Another example are ordered pairs: Here we can apply Kuratowski’s
or Wiener’s definition that is

(a, b) = {{a}}, {a, b}}

or

(a, b) = {{{a}, ∅}, {{b}}}

or even again the axiomatically approach

(a1, b1) = (a2, b2) if and only if a1 = a2 and b1 = b2.

Once there is one of the notions included in a repository formalizations relying
on this notion can be carried out more or less the same.

On Duplication in Mathematical Repositories 9

There are, however, mathematical objects having more than one interesting
representation. The most prominent example are polynomials. Polynomials can
be straightforwardly constructed as sequences (of coefficients) over a ring

p = (an, an−1, . . . a0)

or as functions from the natural numbers into a ring

p = f : IN −→ R where |{x|f(x) 6= 0}| < ∞.

Note that both representations explicitely mention all zero coefficients of a poly-
nomial, that is provide a dense representaion.

There is an alternative seldom used in repositories: sparse polynomials. In
this representation only coefficients not equal to 0 are taken into account — at
the cost that exponents have to be attached. We thus get a list of pairs:

p = ((e1, a1), (e2, a2), . . . (em, am)).

Though more technically to deal with — that probably being the reason for
usually choosing a dense representation for formalization — there exist a number
of efficient algorithms based on a sparse representation, for example interpolation
and computation of integer roots. Therefore it seems reasonable to formalize
both representations in a repository, thus reflecting the mathematical treatment
of polynomials.

Another example is the representation matrices, also a rather basic mathe-
matical structure. The point here is that there exist many interesting subclasses
of matrices, for example block matrices for which a particular multiplication al-
gorithm can be given or triangular matrices for which equations are much easier
to solve. Hence it might be reasonable to include different representations of
matrices, that is different (re-) definitions, in a repository to provide support for
particular applications of matrices.

6 Generalization of Theorems

Generalization of theorems is everyday occurrence in mathematics. In the case
of mathematical repositories generalization is a rather involved topic: It is not
obvious whether the less general theorem can be eliminated. Proofs of other
theorems using the original version might not work automatically with the more
general theorem instead. The reason may be that a slightly different formulation
or even a different (mathematical or technical) version of the original theorem
has been formalized. Then the question is: Should one rework all these proofs
or keep both the original and the more general theorem in the repository? To
illustrate that this decision is both not trivial and important for the organization
of mathematical repositories we present in this section some generalizations of
the CRT.

A rather harmless generalization of Theorem 1 is based on the observation
that the range in which the integer u lies, does not need to be fixed. It is sufficient

10 Adam Grabowski and Christoph Schwarzweller

that it has the width m = m1m2 · · ·mr. This easily follows from the properties
of the congruence ≡.

Theorem 3. Let m1, m2, . . . ,mr be positive integers such that mi and mj are
relatively prime for i 6= j. Let m = m1 m2 · · ·mr and let a, u1, u2, . . . , ur be
integers. Then there exists exactly one integer u with

a ≤ u < a+m and u ≡ ui mod mi

for all 1 ≤ i ≤ r. ⋄

It is trivial that for a = 0 we get the original Theorem 1. Old proofs can very
easily be adapted to work with this generalization of the theorem. Maybe the
system checking the repository even automatically infers that Theorem 3 with
a = 0 substitutes the original theorem. If not, however, even the easy changing
all the proofs to work with the generalization can be an extensive, unpleasant,
and time-consuming task.

A second generalization of the CRT is concerned with the underlying alge-
braic structure. The integers are the prototype example for Euclidean domains.
Taking into account that the residue class ring Zn in fact is the factor ring of Z
by the ideal nZ, it is rather obvious that the following generalization5 holds.

Theorem 4. Let R be a Euclidean domain. Let m1, m2, . . . ,mr be positive
integers such that mi and mj are relatively prime for i 6= j and let m =
m1 m2 · · ·mr. Then we have the ring isomorphism

R/(m) ∼= R/(m0)× · · · × R/(mr). ⋄

This generalization may cause problems: In mathematical repositories it is an
important difference whether one argues about the set of integers (with the usual
operations) or the ring of integers: They have just different types. Technically,
this means that in mathematical repositories we often have two different repre-
sentations of the integers. In the mathematical setting theorems of course hold
for both of them. However, proofs using one representation will not automati-
cally work for the other one. Consequently, though Theorem 4 is more general,
it will not work for proofs using integers instead of the ring of integers; for that
a similar generalization of Theorem 1 is necessary. So in this case in order to
make all proofs work with a generalization, we need to provide generalizations
of different versions of the original theorem — or just change the proofs with the
“right” representation leading to an unbalanced organization of the repository.

We close this subsection with a generalization of the CRT that abstracts
even from algebraic structures. The following theorem [Lün93] deals with sets
and equivalence relations only and presents a condition whether the “canonical”
function σ is onto.

5 Literally this is a generalization of Theorem 2, but of course Theorem 1 can be
analogously generalized to Euclidean domains.

On Duplication in Mathematical Repositories 11

Theorem 5. Let α and β be equivalence relations on a given set M . Let σ :
M −→ M/α×M/β be defined by σ(x) := (α(x), β(x)). Then we have ker(σ) =
α ∩ β and σ is onto if and only if α ◦ β = M ×M . ⋄

Here almost all of the familiar CRT gets lost. There are no congruences, no
algebraic operations, only the factoring (of sets) remains. Therefore, it seems
hardly possible to adapt proofs using any of the preceding CRTs to work with
this generalization in a reasonable amount of time. Any application will rely
on much more concrete structures, so that too much effort has to be spent to
adapt a proof. Theorem 5 in some sense is too general to reasonably work with.
However, even though hardly applicable, the theorem stays interesting from a
didactic point of view.6 It illustrates how far we sometimes can generalize and
may provide the starting point of a discussion whether this is — aside from
mathematical aesthetics — expedient; a topic that is also of great interest for
the organization of mathematical repositories.

7 Conclusions

When building a mathematical repository it seems plausible to not duplicate
knowledge in order to avoid an unnecessary blow-up of the repository. This is
similar to — and may be inspired by — mathematical definitions, in which the
number of axioms is kept as small as possible.

In this paper we have argued that this, however, is not true in general. We
have analyzed miscellanous situations in which it might be reasonable or even
necessary to duplicate knowledge in a repository. The reasons for that are man-
ifold: Different proofs may be interesting for didactic reasons or different repre-
sentations of the same knowledge may better support different groups of users.
Even improvements of a repository may lead to duplication of knowledge be-
cause e.g. the improved version of a theorem cannot always be trivially erased
without reworking lots of proofs.

In general, it is hardly foreseeable in which cases which kind of knowledge
should be duplicated. This strongly depends on different kind of users the repos-
itory should attract.

References

[Coq10] The Coq Proof Assistant; available at http://coq.inria.fr.
[Dav03] J. H. Davenport, MKM from Book to Computer: A Case Study; in: A. As-

perti, B. Buchberger, and J. Davenport (eds.), Proc. of MKM 2003, Lecture
Notes in Computer Science 2594, pp. 17-29, 2003.

[DeB87] N.G. de Bruijn, The Mathematical Vernacular, a language for mathematics
with typed sets; in: P. Dybjer et al. (eds.), Proceedings of the Workshop on
Programming Languages, Marstrand, Sweden, 1987.

6 In fact the proof of Theorem 5 has been an exercise in lectures on linear algebra.

12 Adam Grabowski and Christoph Schwarzweller

[GG99] J. von zur Gathen and J. Gerhard, Modern Computer Algebra; Cambridge
University Press, 1999.

[GS06] A. Grabowski and C. Schwarzweller, Translating Mathematical Vernacular
into Knowledge Repositories; in: M. Kohlhase (ed.), Proceedings of the 4th
International Conference on Mathematical Knowledge Management, Lec-
ture Notes in Artificial Intelligence 3863, pp. 49-64, 2006.

[Har10] J. Harrison, The HOL Light Theorem Prover; available at http://

www.cl.cam.ac.uk/~jrh13/hol-light.
[Hur03] J. Hurd, Verification of the Miller-Rabin Probabilistic Primality Test; in:

Journal of Logic and Algebraic Programming, 50(1-2), pp. 3-21, 2003.
[KZ89] D. Kapur and H. Zhang, An Overview of Rewrite Rule Laboratory (RRL);

in: N. Dershowitz (ed.), Proceedings of the 3rd International Conference on
Rewriting Techniques and Applications, LEcture Notes in Computer Science
355, pp. 559-563, 1989.

[KN04] F. Kamareddine and R. Nederpelt, A Refinement of de Bruijn’s Formal Lan-
guage of Mathematics; in: in: Journal of Logic, Language and Information,
13(3), pp. 287-340, 2004.

[Knu97] D. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Al-
gorithms; 3rd edition, Addison-Wesley, 1997.

[Kon97] A. Kondracki, The Chinese Remainder Theorem; in: Journal of Formalized
Mathematics, vol. 6(4), pp. 573-577, 1997.

[Lün93] H. Lüneburg, Vorlesungen über Lineare Algebra; (in German), BI Wis-
senschaftsverlag, 1993.

[Mén10] Valérie Ménissier-Morain, A Proof of the Chinese Remainder Lemma;
available at http://logical.saclay.inria.fr/coq/distrib/current/

contribs/ZChinese.html.
[Miz10] The Mizar Home Page, http://mizar.org.
[NB04] A. Naumowicz and C. Byliński, Improving Mizar Texts with Properties and

Requirements, in: A. Asperti, G. Bancerek, and A. Trybulec (eds.), Pro-
ceedings of the 3rd International Conference on Mathematical Knowledge
Management, Lecture Notes in Computer Science 3119, pp. 190-301, 2004.

[PSK04] Martin Pollet, Volker Sorge, and Manfred Kerber, Intuitive and Formal Rep-
resentations: The Case of Matrices; in: A. Asperti, G. Bancerek, and A.
Trybulec (eds.), Proceedings of the 3rd International Conference on Mathe-
matical Knowledge Management, Lecture Notes in Computer Science 3119,
pp. 317-331, 2004

[RT01] P. Rudnicki and A. Trybulec, Mathematical Knowledge Management in
Mizar; in: B. Buchberger, O. Caprotti (eds.), Proceedings of the 1st Interna-
tional Conference on Mathematical Knowledge Management, Linz, Austria,
2001.

[Sch08] C. Schwarzweller, Modular Integr Arithmetic; in: Journal of Formalized
Mathematics, vol. 16(3), pp. 247-252, 2008.

[Sch09] C. Schwarzweller, The Chinese Remainder Theorem, its Proofs and its Gen-
eralizations in Mathematical Repositories; in: Studies in Logic, Grammar
and Rhetoric 18(31), p. 103-119, 2009.

[Sho67] J. Shoenfield, Mathematical Logic; Addison-Wesley, 1967.
[Wie06] F. Wiedijk, On the Usefulness of Formal Methods; Nieuwsbrief van de NVTI,

pp. 14-23, 2006.
[ZH92] H. Zhang and X. Hua, Proving the Chinese Remainder Theorem by the

Cover Set Induction; in: D. Kapur (ed.), Automated Deduction - CADE-11,

On Duplication in Mathematical Repositories 13

Proceedings of the 11th International Conference on Automated Deduction,
Lecture Notes in Computer Science 607, pp. 431-455, 1992.

