Abstract
Building a repository of proof-checked mathematical knowledge is without any doubt a lot of work, and besides the actual formalization process there is also the task of maintaining the repository. Thus it seems obvious to keep a repository as small as possible, in particular each piece of mathematical knowledge should be formalized only once.
In this paper, however, we claim that it might be reasonable or even necessary to duplicate knowledge in a mathematical repository. We analyze different situations and reasons for doing so, provide a number of examples supporting our thesis and discuss some implications for building mathematical repositories.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
The Coq Proof Assistant, http://coq.inria.fr
Davenport, J.H.: MKM from Book to Computer: A Case Study. In: Asperti, A., Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 17–29. Springer, Heidelberg (2003)
de Bruijn, N.G.: The Mathematical Vernacular, a language for mathematics with typed sets. In: Dybjer, P., et al. (eds.) Proceedings of the Workshop on Programming Languages, Marstrand, Sweden (1987)
von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (1999)
Grabowski, A., Schwarzweller, C.: Translating Mathematical Vernacular into Knowledge Repositories. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 49–64. Springer, Heidelberg (2006)
Harrison, J.: The HOL Light Theorem Prover, http://www.cl.cam.ac.uk/~jrh13/hol-light
Hurd, J.: Verification of the Miller-Rabin Probabilistic Primality Test. Journal of Logic and Algebraic Programming 50(1-2), 3–21 (2003)
Kapur, D., Zhang, H.: An Overview of Rewrite Rule Laboratory (RRL). In: Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 559–563. Springer, Heidelberg (1989)
Kamareddine, F., Nederpelt, R.: A Refinement of de Bruijn’s Formal Language of Mathematics. Journal of Logic, Language and Information 13(3), 287–340 (2004)
Knuth, D.: The Art of Computer Programming. In: Seminumerical Algorithms, 3rd edn., vol. 2, Addison-Wesley, Reading (1997)
Kondracki, A.: The Chinese Remainder Theorem. Formalized Mathematics 6(4), 573–577 (1997)
Korniłowicz, A.: How to Define Terms in Mizar Effectively. Studies in Logic, Grammar and Rhetoric 18(31), 67–77 (2009)
Lüneburg, H.: Vorlesungen über Lineare Algebra, BI Wissenschaftsverlag (1993) (in German)
Ménissier-Morain, V.: A Proof of the Chinese Remainder Lemma, http://logical.saclay.inria.fr/coq/distrib/current/contribs/ZChinese.html
The Mizar Home Page, http://mizar.org
Naumowicz, A., Byliński, C.: Improving Mizar Texts with Properties and Requirements. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 290–301. Springer, Heidelberg (2004)
Pollet, M., Sorge, V., Kerber, M.: Intuitive and Formal Representations: The Case of Matrices. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 317–331. Springer, Heidelberg (2004)
Rudnicki, P., Trybulec, A.: Mathematical Knowledge Management in Mizar. In: Buchberger, B., Caprotti, O. (eds.) Proceedings of the 1st International Conference on Mathematical Knowledge Management, Linz, Austria (2001)
Schwarzweller, C.: Modular Integer Arithmetic. Formalized Mathematics 16(3), 247–252 (2008)
Schwarzweller, C.: The Chinese Remainder Theorem, its Proofs and its Generalizations in Mathematical Repositories. Studies in Logic, Grammar and Rhetoric 18(31), 103–119 (2009)
Urban, J.: MoMM — Fast Interreduction and Retrieval in Large Libraries of Formalized Mathematics. International Journal on Artificial Intelligence Tools 15(1), 109–130 (2006)
Wiedijk, F.: On the Usefulness of Formal Methods. In: Nieuwsbrief van de NVTI, pp. 14–23 (2006)
Zhang, H., Hua, X.: Proving the Chinese Remainder Theorem by the Cover Set Induction. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 431–455. Springer, Heidelberg (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Grabowski, A., Schwarzweller, C. (2010). On Duplication in Mathematical Repositories. In: Autexier, S., et al. Intelligent Computer Mathematics. CICM 2010. Lecture Notes in Computer Science(), vol 6167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14128-7_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-14128-7_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14127-0
Online ISBN: 978-3-642-14128-7
eBook Packages: Computer ScienceComputer Science (R0)