Skip to main content

Efficient Information Exchange in the Random Phone-Call Model

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6199))

Included in the following conference series:

Abstract

We consider the gossiping problem in the classical random phone-call model introduced by Demers et. al. ([6]). We are given a complete graph, in which every node has an initial message to be disseminated to all other nodes. In each step every node is allowed to establish a communication channel with a randomly chosen neighbour. Karp et al. [15] proved that it is possible to design a randomized procedure performing O(nloglogn) transmissions that accomplishes broadcasting in time O(logn), with probability 1 − n  1.

In this paper we provide a lower bound argument that proves Ω(nlogn) message complexity for any O(logn)-time randomized gossiping algorithm, with probability 1 − o(1). This should be seen as a separation result between broadcasting and gossiping in the random phone-call model.

We study gossiping at the two opposite points of the time and message complexity trade-off. We show that one can perform gossiping based on exchange of O(n·logn/loglogn) messages in time O(log2 n/loglogn), and based on exchange of O(nloglogn) messages with the time complexity \(O(\sqrt n).\) Both results hold wit probability 1 − n − 1.

Finally, we consider a model in which each node is allowed to store a small set of neighbours participating in its earlier transmissions. We show that in this model randomized gossiping based on exchange of O(nloglogn) messages can be obtained in time O(logn), with probability 1 − n − 1.

The third author was partially supported by the German Research Foundation under contract EL 399/2-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alistarh, D., Gilbert, S., Guerraoui, R., Zadimoghaddam, M.: How Efficient is Gossip? (On the Message Complexity of Resilient Information Exchange). In: Proc. 37th International Colloquium on Automata, Languages and Programming, ICALP 2010 (2010)

    Google Scholar 

  2. Berenbrink, P., Elsässer, R., Friedetzky, T.: Efficient randomised broadcasting in random regular networks with applications in peer-to-peer systems. In: Proc. 27th ACM Symposium on Principles of Distributed Computing, PODC 2008, pp. 155–164 (2008)

    Google Scholar 

  3. Chen, J., Pandurangan, G.: Optimal Gossip-Based Aggregate Computation. In: Proc. of 22nd ACM Symposium on Parallel Algorithms and Architectures, SPAA 2010 (2010)

    Google Scholar 

  4. Chernoff, H.: Measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Statist. 23, 493–507 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  5. Czumaj, A., Gąsieniec, L., Pelc, A.: L Gąsieniec, and A. Pelc. Time and cost trade-offs in gossiping. SIAM J. Discrete Mathematics 11(3), 400–413 (1998)

    Article  MATH  Google Scholar 

  6. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart, D., Terry, D.: Epidemic Algorithms for Replicated Database Maintenance. In: Proc. 6th ACM Symposium on Principles of Distributed Computing, PODC ’87, pp. 1–12 (1987)

    Google Scholar 

  7. Dubhashi, D., Ranjan, D.: Balls and Bins: A Study in Negative Dependence. Random Structures and Algorithms 13(2), 99–124 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Elsässer, R., Sauerwald, T.: The power of memory in randomized broadcasting. In: Proc. 19th ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pp. 290–227 (2008)

    Google Scholar 

  9. Elsässer, R.: On the communication complexity of randomized broadcasting in random-like graphs. In: Proc. 18th ACM Symposium on Parallel Algorithms and Architectures, SPAA 2006, pp. 148–157 (2006)

    Google Scholar 

  10. Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks. Random Structures and Algorithms 1(4), 447–460 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Frieze, A., Grimmett, G.: The shortest-path problem for graphs with random arc-lengths. Discrete Applied Mathematics 10, 57–77 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grigni, M., Peleg, D.: Tight Bounds on Minimum Broadcast Networks. SIAM J. on Discrete Mathematics 4(2), 207–222 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: A survey of gossiping and broadcasting in communication networks. Networks 18(4), 319–349 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hromkovic, J., Klasing, R., Pelc, A., Ruzicka, P., Unger, W.: Dissemination of Information in Communication Networks - Broadcasting. Gossiping, Leader Election, and Fault-Tolerance. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  15. Karp, R., Schindelhauer, C., Shenker, S., Vöcking, B.: Randomized rumor spreading. In: Proc. 41st Annual Symposium on Foundations of Computer Science, FOCS 2000, pp. 565–574 (2000)

    Google Scholar 

  16. Pittel, B.: Linear Probing: The Probable Largest Search Time Grows Logarithmically with the Number of Records. J. Algorithms 8(2), 236–249 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berenbrink, P., Czyzowicz, J., Elsässer, R., Gąsieniec, L. (2010). Efficient Information Exchange in the Random Phone-Call Model. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14162-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14162-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14161-4

  • Online ISBN: 978-3-642-14162-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics