Skip to main content

Private and Continual Release of Statistics

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6199))

Included in the following conference series:

  • 1385 Accesses

Abstract

We ask the question – how can websites and data aggregators continually release updated statistics, and meanwhile preserve each individual user’s privacy? Given a stream of 0’s and 1’s, we propose a differentially private continual counter that outputs at every time step the approximate number of 1’s seen thus far. Our counter construction has error that is only poly-log in the number of time steps. We can extend the basic counter construction to allow websites to continually give top-k and hot items suggestions while preserving users’ privacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Calandrino, J.A., Narayanan, A., Felten, E.W., Shmatikov, V.: Don’t review that book: Privacy risks of collaborative filtering. Manuscript (2009)

    Google Scholar 

  2. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Frequency estimation of internet packet streams with limited space. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, p. 348. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: PODS (2003)

    Google Scholar 

  4. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Dwork, C.: The differential privacy frontier. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 496–502. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Dwork, C.: Differential privacy in new settings. In: Invited presentation at ACM-SIAM Symposium on Discrete Algorithms, SODA (2010)

    Google Scholar 

  7. Dwork, C.: A firm foundation for private data analysis. Communications of the ACM (2010)

    Google Scholar 

  8. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Dwork, C., Naor, M., Pitassi, T., Rothblum, G.N.: Differential privacy under continual observation. In: STOC (2010)

    Google Scholar 

  10. Dwork, C., Naor, M., Pitassi, T., Rothblum, G.N., Yekhanin, S.: Pan-private streaming algorithms. In: Innovations in Computer Science, ISC (2010)

    Google Scholar 

  11. Dwork, C., Yekhanin, S.: New efficient attacks on statistical disclosure control mechanisms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 469–480. Springer, Heidelberg (2008)

    Google Scholar 

  12. Jones, R., Kumar, R., Pang, B., Tomkins, A.: Vanity fair: privacy in querylog bundles. In: CIKM (2008)

    Google Scholar 

  13. Korolova, A., Kenthapadi, K., Mishra, N., Ntoulas, A.: Releasing search queries and clicks privately. In: WWW (2009)

    Google Scholar 

  14. Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In: VLDB (2002)

    Google Scholar 

  15. McSherry, F., Mironov, I.: Differentially private recommender systems: building privacy into the netflix prize contenders. In: KDD (2009)

    Google Scholar 

  16. Metwally, A., Agrawal, D., Abbadi, A.E.: Efficient computation of frequent and top-k elements in data streams. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 398–412. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: IEEE Symposium on Security and Privacy (2008)

    Google Scholar 

  18. Song, D., Hubert Chan, T.-H., Shi, E. Private and continual release of statistics (2010), http://eprint.iacr.org/2010/076.pdf

  19. Warner, S.L.: Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hubert Chan, TH., Shi, E., Song, D. (2010). Private and Continual Release of Statistics. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14162-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14162-1_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14161-4

  • Online ISBN: 978-3-642-14162-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics