Abstract
We ask the question – how can websites and data aggregators continually release updated statistics, and meanwhile preserve each individual user’s privacy? Given a stream of 0’s and 1’s, we propose a differentially private continual counter that outputs at every time step the approximate number of 1’s seen thus far. Our counter construction has error that is only poly-log in the number of time steps. We can extend the basic counter construction to allow websites to continually give top-k and hot items suggestions while preserving users’ privacy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Calandrino, J.A., Narayanan, A., Felten, E.W., Shmatikov, V.: Don’t review that book: Privacy risks of collaborative filtering. Manuscript (2009)
Demaine, E.D., López-Ortiz, A., Munro, J.I.: Frequency estimation of internet packet streams with limited space. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, p. 348. Springer, Heidelberg (2002)
Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: PODS (2003)
Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)
Dwork, C.: The differential privacy frontier. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 496–502. Springer, Heidelberg (2009)
Dwork, C.: Differential privacy in new settings. In: Invited presentation at ACM-SIAM Symposium on Discrete Algorithms, SODA (2010)
Dwork, C.: A firm foundation for private data analysis. Communications of the ACM (2010)
Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)
Dwork, C., Naor, M., Pitassi, T., Rothblum, G.N.: Differential privacy under continual observation. In: STOC (2010)
Dwork, C., Naor, M., Pitassi, T., Rothblum, G.N., Yekhanin, S.: Pan-private streaming algorithms. In: Innovations in Computer Science, ISC (2010)
Dwork, C., Yekhanin, S.: New efficient attacks on statistical disclosure control mechanisms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 469–480. Springer, Heidelberg (2008)
Jones, R., Kumar, R., Pang, B., Tomkins, A.: Vanity fair: privacy in querylog bundles. In: CIKM (2008)
Korolova, A., Kenthapadi, K., Mishra, N., Ntoulas, A.: Releasing search queries and clicks privately. In: WWW (2009)
Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In: VLDB (2002)
McSherry, F., Mironov, I.: Differentially private recommender systems: building privacy into the netflix prize contenders. In: KDD (2009)
Metwally, A., Agrawal, D., Abbadi, A.E.: Efficient computation of frequent and top-k elements in data streams. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 398–412. Springer, Heidelberg (2004)
Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: IEEE Symposium on Security and Privacy (2008)
Song, D., Hubert Chan, T.-H., Shi, E. Private and continual release of statistics (2010), http://eprint.iacr.org/2010/076.pdf
Warner, S.L.: Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association (1965)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hubert Chan, TH., Shi, E., Song, D. (2010). Private and Continual Release of Statistics. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14162-1_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-14162-1_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14161-4
Online ISBN: 978-3-642-14162-1
eBook Packages: Computer ScienceComputer Science (R0)