Abstract
Energy parity games are infinite two-player turn-based games played on weighted graphs. The objective of the game combines a (qualitative) parity condition with the (quantitative) requirement that the sum of the weights (i.e., the level of energy in the game) must remain positive. Beside their own interest in the design and synthesis of resource-constrained omega-regular specifications, energy parity games provide one of the simplest model of games with combined qualitative and quantitative objective. Our main results are as follows: (a) exponential memory is sufficient and may be necessary for winning strategies in energy parity games; (b) the problem of deciding the winner in energy parity games can be solved in NP ∩ coNP; and (c) we give an algorithm to solve energy parity by reduction to energy games. We also show that the problem of deciding the winner in energy parity games is polynomially equivalent to the problem of deciding the winner in mean-payoff parity games, which can thus be solved in NP ∩ coNP. As a consequence we also obtain a conceptually simple algorithm to solve mean-payoff parity games.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable specifications of reactive systems. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989)
Björklund, H., Sandberg, S., Vorobyov, S.G.: Memoryless determinacy of parity and mean payoff games: a simple proof. Theor. Comput. Sci. 310(1-3), 365–378 (2004)
Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in synthesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009)
Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in weighted timed automata with energy constraints. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008)
Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. SIAM Journal on Control and Optimization 25(1), 206–230 (1987)
Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer, Heidelberg (2003)
Chaloupka, J., Brim, L.: Faster algorithm for mean-payoff games. In: Proc. of MEMICS, pp. 45–53. Nov. Press (2009)
Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Mean-payoff parity games. In: Proc. of LICS, pp. 178–187. IEEE Computer Society, Los Alamitos (2005)
Condon, A.: The complexity of stochastic games. Inf. Comput. 96(2), 203–224 (1992)
Doyen, L., Gentilini, R., Raskin, J.-F.: Faster pseudopolynomial algorithms for mean-payoff games. Technical Report 2009.120, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (2009)
Emerson, E.A., Jutla, C.: Tree automata, mu-calculus and determinacy. In: Proc. of FOCS, pp. 368–377. IEEE, Los Alamitos (1991)
Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model-checking for fragments of μ-calculus. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 385–396. Springer, Heidelberg (1993)
Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)
Gurevich, Y., Harrington, L.: Trees, automata, and games. In: Proc. of STOC, pp. 60–65. ACM Press, New York (1982)
McNaughton, R.: Infinite games played on finite graphs. Annals of Pure and Applied Logic 65(2), 149–184 (1993)
Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. of POPL, pp. 179–190 (1989)
Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event processes. SIAM Journal on Control and Optimization 25(1), 206–230 (1987)
Shapley, L.S.: Stochastic games. Proc. of the National Acadamy of Science USA 39, 1095–1100 (1953)
Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages, Beyond Words, ch.7, vol. 3, pp. 389–455. Springer, Heidelberg (1997)
Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theor. Comput. Sci. 200, 135–183 (1998)
Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput. Sci. 158(1&2), 343–359 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chatterjee, K., Doyen, L. (2010). Energy Parity Games. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14162-1_50
Download citation
DOI: https://doi.org/10.1007/978-3-642-14162-1_50
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14161-4
Online ISBN: 978-3-642-14162-1
eBook Packages: Computer ScienceComputer Science (R0)