Skip to main content

Energy Parity Games

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6199))

Included in the following conference series:

  • 1282 Accesses

Abstract

Energy parity games are infinite two-player turn-based games played on weighted graphs. The objective of the game combines a (qualitative) parity condition with the (quantitative) requirement that the sum of the weights (i.e., the level of energy in the game) must remain positive. Beside their own interest in the design and synthesis of resource-constrained omega-regular specifications, energy parity games provide one of the simplest model of games with combined qualitative and quantitative objective. Our main results are as follows: (a) exponential memory is sufficient and may be necessary for winning strategies in energy parity games; (b) the problem of deciding the winner in energy parity games can be solved in NP ∩ coNP; and (c) we give an algorithm to solve energy parity by reduction to energy games. We also show that the problem of deciding the winner in energy parity games is polynomially equivalent to the problem of deciding the winner in mean-payoff parity games, which can thus be solved in NP ∩ coNP. As a consequence we also obtain a conceptually simple algorithm to solve mean-payoff parity games.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable specifications of reactive systems. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  2. Björklund, H., Sandberg, S., Vorobyov, S.G.: Memoryless determinacy of parity and mean payoff games: a simple proof. Theor. Comput. Sci. 310(1-3), 365–378 (2004)

    Article  MATH  Google Scholar 

  3. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in synthesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009)

    Google Scholar 

  4. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in weighted timed automata with energy constraints. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. SIAM Journal on Control and Optimization 25(1), 206–230 (1987)

    Article  MathSciNet  Google Scholar 

  6. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Chaloupka, J., Brim, L.: Faster algorithm for mean-payoff games. In: Proc. of MEMICS, pp. 45–53. Nov. Press (2009)

    Google Scholar 

  8. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Mean-payoff parity games. In: Proc. of LICS, pp. 178–187. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  9. Condon, A.: The complexity of stochastic games. Inf. Comput. 96(2), 203–224 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Doyen, L., Gentilini, R., Raskin, J.-F.: Faster pseudopolynomial algorithms for mean-payoff games. Technical Report 2009.120, Université Libre de Bruxelles (ULB), Bruxelles, Belgium (2009)

    Google Scholar 

  11. Emerson, E.A., Jutla, C.: Tree automata, mu-calculus and determinacy. In: Proc. of FOCS, pp. 368–377. IEEE, Los Alamitos (1991)

    Google Scholar 

  12. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model-checking for fragments of μ-calculus. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 385–396. Springer, Heidelberg (1993)

    Google Scholar 

  13. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  14. Gurevich, Y., Harrington, L.: Trees, automata, and games. In: Proc. of STOC, pp. 60–65. ACM Press, New York (1982)

    Google Scholar 

  15. McNaughton, R.: Infinite games played on finite graphs. Annals of Pure and Applied Logic 65(2), 149–184 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. of POPL, pp. 179–190 (1989)

    Google Scholar 

  17. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event processes. SIAM Journal on Control and Optimization 25(1), 206–230 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Shapley, L.S.: Stochastic games. Proc. of the National Acadamy of Science USA 39, 1095–1100 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  19. Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages, Beyond Words, ch.7, vol. 3, pp. 389–455. Springer, Heidelberg (1997)

    Google Scholar 

  20. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theor. Comput. Sci. 200, 135–183 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput. Sci. 158(1&2), 343–359 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chatterjee, K., Doyen, L. (2010). Energy Parity Games. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14162-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14162-1_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14161-4

  • Online ISBN: 978-3-642-14162-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics