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LIGM, Université Paris-Est & CNRS
{braud,carayol}@univ-mlv.fr

Abstract. We investigate the linear orders belonging to the pushdown
hierarchy. Our results are based on the characterization of the pushdown
hierarchy by graph transformations due to Caucal and do not make any
use of higher-order pushdown automata machinery.

Our main results show that ordinals belonging to the n-th level are
exactly those strictly smaller than the tower of ω of height n + 1. More
generally the Hausdorff rank of scattered linear orders on the n-th level
is strictly smaller than the tower of ω of height n. As a corollary the
Cantor-Bendixson rank of the tree solutions of safe recursion schemes of
order n is smaller than the tower of ω of height n.

As a spin-off result, we show that the ω-words belonging to the second
level of the pushdown hierarchy are exactly the morphic words.

1 Introduction

The pushdown hierarchy (also known as the Caucal hierarchy) is a hierarchy of
families of infinite graphs having decidable monadic second-order (MSO) the-
ory. This hierarchy has several equivalent definitions and has received a lot of
attention in the last ten years (see [Tho03, Ong07] for surveys).

At the first level of this hierarchy are the transition graphs of the pushdown
automata which coincide with the prefix-recognizable graphs [Cau96]. Every level
can in a similar fashion be characterized as the transitions graphs of an extension
of pushdown automata called an higher-order pushdown automata [Mas76]. The
rewriting approach of [Cau96] was also extended to all levels in [Car05]. The
deterministic trees at level n correspond to the (trees solutions of) safe recursion
schemes of order (n− 1) [Cau02, KNU02].

An alternative characterization due to Caucal [Cau02, CW03] consists in con-
structing these graphs by applying MSO-interpretations and graph unfoldings
starting from finite trees. The level of a graph in this approach is given by the
number of times the unfolding operation has been applied.

Despite these various characterizations, one of the main question concerning
this hierarchy is to characterize the graphs inhabiting each level and in particular
to provide tools for showing that a structure does not belong to a certain level.
For instance, to the authors knowledge, the only proof of the strictness of the
pushdown hierarchy relies on the strictness of the hierarchy of languages accepted
by higher-order pushdown automata obtained in [Eng91]. A partial answer is
given in [Blu08] which provides a pumping lemma for these automata. However
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the bounds provided in the latter article are not tight and hence do not allow to
derive the strictness level by level.

This article subscribes to this line of research and characterizes linear orders
in the pushdown hierarchy.

Linear orders in this hierarchy have first been studied via recursion schemes. A
natural way to define a linear order starting from an ordered tree is to consider
its frontier i.e. its set of leaves ordered lexicographically. This approach was
initiated by Courcelle in [Cou78]. Two families of linear orders are of particular
interest : the well-orders (or ordinals) and the scattered orders.

At the first level of the hierarchy, the scattered frontiers of the regular de-
terministic tree (order-0 schemes) have an Hausdorff rank strictly less than ω
[Hei80] and the ordinals are known to be those strictly smaller than ωω.

At the second level, the frontiers of order-1 recursion schemes are also called
algebraic linear orders. Is was shown in [BÉ07, BÉ10] that algebraic ordinals are
precisely the ordinals strictly smaller than ωωω

. In [BÉ09], it is shown that any
scattered algebraic linear order has a Hausdorff rank strictly smaller than ωω.
They conjecture that similar bounds can be obtained for recursion schemes of
arbitrary orders. The results presented in this article prove this conjecture in
the case of safe recursion schemes. Our main tool is the characterization of the
pushdown hierarchy in terms of graph transformations.

In Section 3, we show that any linear order at level n is isomorphic to the
frontier of some order-(n− 1) safe recursion scheme. We use this result to show
that the ω-words on the second level are exactly the morphic words. In Section 4,
we show that ordinals at level n are exactly the ordinals below ω ↑↑ (n+1) (which
stands for the tower of ω of height n+ 1). The fact that all these ordinals are in
at level n was shown in [Bra09]. This result provides a self-contained proof of the
strictness of the pushdown hierarchy level by level. In Section 5, we show that
the Hausdorff rank of scattered orders on level n is strictly smaller than ω ↑↑ n.
As a corollary we obtain that the Cantor-Bendixson rank of the tree solutions
of safe recursion schemes of order n is smaller than ω ↑↑ n.

2 Preliminaries

2.1 Linear Orders and Trees

A linear order L = (D,<) is given by a set D together with a total order <
on D. We write L∗ for the linear order (D,<∗) where x <∗ y iff y < x. For
a detailed presentation of linear orderings, we refer to [Ros82]. L1 = (D1, <1)
is a subordering of L2 = (D2, <2), written L1 � L2, if D1 ⊆ D2 and <1 is
equal to <2 restricted to D1. The order type of L is the class of all linear orders
isomorphic to L. We denote by 0,1, ω and ζ the order type of the order with 0
and 1 element, (N, <) and (Z, <) respectively.

A colored linear order is a mapping from a linear order to a finite set of
symbols called colors.

A well-order is a linear order for which every non-empty subordering has a
smallest element. The order type of a well-order is called an ordinal. We note
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ε0 the smallest ordinal such that ε0 = ωε0 . For all n ≥ 0, we define ω ↑↑ n
by taking ω ↑↑ 0 = 1 and ω ↑↑ (n + 1) = ω(ω↑↑n) for n ≥ 0. In particular
ε0 = sup {ω ↑↑ n | n ≥ 0}. An ω-word is a colored linear order of order type ω.

Let (Σ,<) be a finite ordered alphabet. We write Σ∗ the set of words over
Σ. We write u � v if u is a prefix of v and u⊥v if u �� v and v �� u. We denote
by u ∧ v the greatest common prefix of u and v. The lexicographic order on Σ∗

is defined by: u <lex v iff u � v or u = waw′ and v = wbw′′ with a < b ∈ Σ.

A deterministic tree t over an ordered alphabet Σ is a prefix-closed subset
of Σ∗. If u � v, we say that u is an ancestor of v or equivalently that v is
a descendant of u. Elements of t are called nodes and nodes without proper
descendant are called leaves. A colored deterministic tree t is a mapping from a
deterministic tree t to a finite set of symbols called colors.

A deterministic tree is pruned if it is binary (i.e. Σ = {0, 1} with the usual
order), full (i.e. every node is either a leaf or has two sons) and below every node
there is at least one leaf.

The frontier of a deterministic tree t, denoted Fr(t), is the linear order ob-
tained by considering the leaves of t with the lexicographic order. The colored
frontier of a deterministic tree t colored by Γ is the mapping from Fr(t) to Γ
associating to each leaf of t its color in t. In the following, whenever we talk
about a deterministic tree we always assume that the alphabet is ordered.

2.2 Graphs and Monadic Second-Order Logic

Let Σ and Γ be two finite sets of arc and vertex labels respectively. Vertex labels
are also called colors. A (labeled) graph G is a subset of V × Σ × V ∪ Γ × V
where V is a finite or countable arbitrary set. An element (s, a, t) of V ×Σ×V is
an arc of source s, target t and label a, and is written s a−→ t if G is understood.
An element (c, s) ∈ Γ × V intuitively means that s is colored by c.

The set of all vertices appearing in G is its support VG. A sequence of arcs
s1

a1−→ t1, . . . , sk
ak−→ tk with ∀i ∈ [2, k], si = ti−1 is a path starting from s1. We

write s1
u−→ tk where u = a1 . . . ak.

A graph is deterministic if there are no arcs with the same label that share
the same source but not the same target (i.e., for all a ∈ Σ, if s a−→

G
t and s a−→

G
t′

then t = t′). A graph G is a tree if there exists a vertex r called the root such
that for any vertex in the graph there exists a unique path from the root r to
this vertex.

Linear orders and deterministic trees and their respective colored versions can
be represented by graphs in a natural way. A linear order (L,<) is represented
by the graph {(u,<, v) | u, v ∈ L and u < v}. A deterministic tree t over Σ is
represented by the graph {(u, a, ua) | u, ua ∈ t and a ∈ Σ}. In the following, we
will not distinguish between these objects and their graph representations.

We consider monadic second-order (MSO) logic over graphs with the stan-
dard syntax and semantics (see e.g. [EF95] for a detailed presentation). We
write ϕ(X1, . . . , Xn, y1, . . . , ym) to denote that the free variables of the formula
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ϕ are among X1, . . . , Xn (monadic second-order) and y1, . . . , ym (first-order). A
formula without free variables is called a sentence.

For a graph G and a sentence ϕ, we write G |= ϕ if G satisfies the formula
ϕ. The MSO-theory of G is the set of sentences satisfied by G. For all for-
mula ϕ(X1, . . . , Xn, y1, . . . , ym), all sets U1, . . . , Un of nodes of G and all nodes
v1, . . . , vm of G, we write G |= ϕ[U1, . . . , Un, v1, . . . , vm] to express that ϕ holds
in G when Xi is interpreted as Ui for all i ∈ [1, n] and yj is interpreted as vj for
all j ∈ [1,m].

2.3 Graph Transformations

The unfolding Unf(G, r) of a graph G from a vertex r ∈ VG is the tree T s.t. for
all a ∈ Σ, π a−→ π′ ∈ T if and only if π and π′ are two paths in G starting from
r and π′ = π · (s a−→ t). Moreover for any color c ∈ Γ , (c, π) ∈ T if and only if π
is a path in G starting with r and ending in t with (c, t) ∈ G.

An MSO-interpretation is given by a family I = (ϕa(x, y))a∈Σ ∪(ϕc(x))c∈Γ of
MSO-formulas. Applying such an MSO-interpretation to a graphG we obtain the
graph I(G) labeled by Σ and colored by Γ and s.t. for all a ∈ Σ, (u, a, v) ∈ I(G)
iff G |= ϕa(u, v) and for all c ∈ Γ , (c, u) ∈ I(G) iff G |= ϕc(u).

An MSO-coloring is a particular MSO-interpretation that only affects colors
and leaves the arcs unchanged (i.e., for all a ∈ Σ, ϕa(x, y) = x

a−→ y).
Interpretations cannot increase the size of a structure. To overcome this weak-

ness the notion of a transduction was introduced [Cou94]. Let K = {k1, . . . , km}
be a finite set disjoint from Σ. A K-copying operation applied to G adds, to
every vertex of G, m out-going arcs labeled resp. by k1, . . . , kn all going to
fresh vertices. An MSO-transduction T is a K-copying operation followed by an
MSO-interpretation I.

2.4 MSO on Deterministic Trees

A non-deterministic tree-walking automaton (TWA) working on deterministic
trees over Σ colored by Γ is a tuple W = (Q, q0, F,Δ) where Q is the finite
set of states, q0 ∈ Q is the initial state, F is the set of final states and Δ is
the set of transitions. A transition is a tuple (p, c, q, a) with p ∈ Q and c ∈ Γ
– corresponding respectively to the current state and the color of the current
node – q ∈ Q and a ∈ ({↑, ε} ∪ Σ) – q being the new state and a the action
to perform. Intuitively ε corresponds to “stay in the current node”, ↑ to “go to
the parent node” and d ∈ Σ corresponds to “go to the d-son”. We say that W
accepts a pair of nodes (u, v) if it can reach v in a final state starting from u in
the initial state.

Proposition 1 ([Car06, Prop. 3.2.1]). For any deterministic tree t and any
MSO-formula ϕ(x, y), there exists an MSO-coloring M and a TWA A such that
t |= ϕ[u, v] iff A accepts (u, v) on M(t).
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2.5 The Pushdown Hierarchy

Following [Cau02], we define the pushdown hierarchy by iterating MSO-inter-
pretations and unfoldings starting from finite graphs.

Tree0 = the class of finite trees
Graphn = the class of graphs MSO-interpretable in a tree of Treen

Treen+1 = the class of the unfoldings of graphs in Graphn.

All the graphs in Graphn have a decidable MSO-theory. Furthermore the hi-
erarchy is unchanged if we require that any graph in Graphn is MSO-interpreted
in a deterministic tree in Treen [CW03]. We only recall the two properties that
will be used in this article. For a more detailed presentation, we refer the reader
to [Tho03].

Proposition 2 ([CW03]). For all n, the deterministic trees of Treen are closed
under MSO-coloring and Graphn is closed under MSO-transduction.

Proposition 3 ([Fra05, Car06]). Take t a deterministic tree in Treen, ϕ(X)
a MSO-formula and $ a fresh color symbol. If t |= ∃Xϕ(X) then there exists
U ⊆ t s.t. t |= ϕ[U ] and t ∪ {($, u) | u ∈ U} also belongs to Treen.

3 Frontiers of Trees in the Pushdown Hierarchy

In this section, we show that every (colored) linear order in Graphn is the (col-
ored) frontier of a pruned tree in Treen. Remark that as the lexicographic order
on a deterministic tree is definable in MSO logic, the frontiers of the determin-
istic trees in Treen belongs to Graphn. The following theorem establishes the
converse inclusion.

Theorem 1. Each colored linear order in Graphn is the frontier of a colored
pruned tree in Treen.

Proof (Sketch). To simplify the presentation, we focus on the uncolored case.
Let L = (D,<L) be a linear order in Graphn for some n ≥ 0.

Using the definition of Graphn and Prop. 1 and 2, we have that there exists a
colored deterministic tree t ∈ Treen and a TWA A such that D is a set of nodes
of t and for all u, v ∈ D, u <L v iff A accepts (u, v). We can w.l.o.g. assume that
D is the set of leaves of t. For instance, it is enough to add a new leaf below
every node of D and to modify A accordingly.

The following construction rearranges the leaves of t into a new deterministic
tree s(t) ∈ Treen so that lexicographic order on the leaves of s(t) matches <L

on the leaves of t. It is easy to adapt the definition of s(t) to obtain a pruned
tree (while remaining in Treen).

For all leaf u ∈ D and for all v � u ∈ D, we define s(u, v) as the maximal
length of a decreasing sequence u0 >L u1 >L . . . >L uk of leaves starting with
u0 = u and such that for i ∈ [0, k−1], ui∧ui+1 = v. Using a pumping argument
on A, we can show that there exists n0 ≥ 1 such that for every leaf u ∈ D and
all nodes v � u, s(u, v) ≤ n0.
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To every leaf u = u1 · · ·un, we associate the finite sequence s(u) in [1, n0]n

defined by s(u) = (s(u, ε), s(u, u1), . . . , s(u, u1 · · ·un−1)). The key property of this
sequence is that comparing two leaves u and v with<L is equivalent to comparing
s(u) and s(v) using the lexicographic order, i.e. u <L v iff s(u) <lex s(v).

Consider the tree s(t) over the finite alphabet [1, n0] obtained by taking the
prefix-closure of {s(u) | u leaf of t)}. The frontier of s(t) is isomorphic to (D,<L).
These definitions are illustrated on the finite example below; t is on the left and
s(t) is on the right; for each leaf x, we give its order for <L and the sequence s(x).

0
(1,1)

4
(3,2)

3
(2,3,2)

1
(2,1,1)

2
(2,2)

0

1

1

1

2

3

2

1 2 3

4

2

1
2

3

The last step of the proof is to show that s(t) also belongs to Treen. ��

We know from [Cau02] that the infinite terms in Treen are the terms solutions
of safe recursive schemes of order (n− 1) (we refer the reader to [KNU02] for a
formal definition of safe recursion schemes). Hence the previous theorem can be
restated as follows.

Corollary 1. A linear order colored by Γ is in Graphn if and only if it is the
colored frontier of some tree solution of a safe recursion scheme of order (n− 1)
with one terminal f of arity 2 and terminal of arity 0 for each c ∈ Γ .

As a first application of this result, we show that ω-words in Graph2 are precisely
the morphic words. A morphic word over a finite alphabet Γ is given by a letter
Δ ∈ Γ and two morphisms τ and σ : Γ �→ Γ ∗ such that τ(Δ) = Δ.u with
u ∈ Γ ∗. The associated ω-word is σ(τω(Δ)). For instance, the morphic word
abaab . . . a2i

b . . . is given by the morphisms τ and σ defined by: τ(Δ) = Δbaa,
τ(a) = aa, τ(b) = b and σ(Δ) = a, σ(a) = a, σ(b) = b.

A direct consequence of [Cau02, Prop. 3.2] is that the morphic words belong
to Graph2. For the other direction, by Corollary 1 we only need to consider
the frontier of trees solutions of order-1 schemes. As their frontier are of order
type ω, these trees have at most one infinite branch which is also their right-most
branch. This constraint leads to a strong normal form for the associated schemes
which easily allows to show that their colored frontiers are morphic words.

Theorem 2. The ω-words of Graph2 are the morphic words.

4 Ordinals

In this section, we characterize the ordinals in the pushdown hierarchy. In [Bra09],
ordinals below ω ↑↑ (n + 1) are shown to be in Graphn. We show that they are
the only ordinals in Graphn.
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By Theorem 1, we only need to consider frontiers of pruned trees. Pruned
trees with a well-ordered frontier are easily characterized.

Definition 1. A pruned tree is well-ordered if it does not have any infinite
branch containing infinitely many 0’s.

The frontier of a pruned tree t is an ordinal if and only if t is a well-ordered tree.

Theorem 3. For all n ≥ 0 and ordinal α, α ∈ Graphn if and only if α < ω ↑↑
(n+ 1).

Proof (Sketch). As previously mentioned, we only need to show that for all n ≥ 0,
for any well-ordered tree t ∈ Treen, Fr(t) < ω ↑↑ (n+ 1).

We proceed by induction on the level n. The case n = 0 is obvious. Let t be
a well-ordered tree in Treen+1. By definition of Treen+1, there exists a graph
G ∈ Graphn and a vertex r ∈ VG such that t = Unf(G, r). Furthermore, we can
assume w.l.o.g. that every vertex of G is reachable from r.

We are going to consider a particular spanning tree T of G rooted at r such
that T is MSO-interpretable in G.

For every node s ∈ VG, let 
(s) be the minimal w ∈ {0, 1}∗ (for the lexico-
graphic order) such that r w−→

G
s. The existence of 
(s) is ensured by the fact that

G unfolds from r into a well-ordered tree. The spanning tree T is defined as the
set of arcs {s a−→ t | 
(t) = 
(s) · a}.

For technical reasons, we consider the pruned tree T obtained by adding
dummy leaves below some nodes of T in such a way that their out-degree in T
is equal to their out-degree in G. As any infinite branch of T is also an infinite
branch of t, T is a well-ordered.

As T can be MSO-transducted in G, it belongs to Graphn together with its
frontier. Hence by induction hypothesis, Fr(T ) < ω ↑↑ (n+ 1).

The key property that allows us to conclude is that Fr(t) ≤ ωFr(T ). To
establish this inequality, recall that ωFr(T ) is isomorphic to the set of (non-
strictly) decreasing sequences of ordinals below Fr(T ) with the lexicographic
order. Hence it is enough to show that there exists an injective mapping Φ from
the leaves of t to the finite decreasing sequences of leaves of T s.t. Φ preserves
the lexicographic order. Recall that a leaf u of t corresponds to a path πu in G
starting from r. Intuitively Φ associates to a leaf u of t the sequence of leaves of
T corresponding to the sequence of arcs in G \ T along the path πu.

r

2 3 4

5

1

0
...

...
...

......



Linear Orders in the Pushdown Hierarchy 95

The above example shows from left to right G where dark arcs belong to T ,
then T and finally Unf(G, r). Here, Fr(Unf(G, r)) = ω2 + ω. ��

This result gives an alternative proof of the strictness of the pushdown hierarchy
and shows that ε0 does not belong to this hierarchy.

5 Scattered Linear Orders

In this section, we consider the scattered linear orders in the pushdown hierarchy.
A linear order is scattered if it does not contain any dense subordering. Ordinals
are a particular case of scattered linear orders. However, scattered orders are
not necessarily well-orderings; consider for instance ζ or ω + ω∗. For a detailed
presentation, we refer the reader to [Ros82].

For countable scattered orders, a more constructive characterization is pro-
vided by Hausdorff Theorem which also gives a measure of the complexity of
such orders. From now on, we only consider countable scattered orders.

Theorem 4 (Hausdorff [Hau08]). A countable linear order is scattered iff it
belongs to S=

⋃
α Vα where V0 = {0,1} and Vβ =

{∑
i∈ζ Li | ∀i, Li ∈

⋃
α<β Vα

}
.

The Hausdorff rank1 of a scattered order L, written rH(L), is the smallest α
such that L can be expressed as a finite sum of elements of Vα. For instance, we
have rH(ζ) = rH(ω) = rH(ω + ω∗) = 1.

The Hausdorff rank of the ordinal ωα is equal to α. In particular if α is written∑k
i=1 ω

αi with α1 ≥ . . . ≥ αk in Cantor’s normal form then rH(α) = α1.

5.1 Trees with Scattered Frontiers

An alternative characterization of countable scattered orders can be obtained by
considering trees having these orders as frontier. The countable scattered orders
are those which are frontiers of trees with only countably many infinite branches
also called tame trees. The following proposition is part of the folklore.

Proposition 4. Let t be a pruned tree, the following propositions are equivalent:

1. Fr(t) is a scattered linear order,
2. t has countably many infinite branches,
3. t does not contain any branching subset (i.e. a non-empty subset U ⊆ t such

that for all u ∈ U , u0{0, 1}∗ ∩ U �= ∅ and u1{0, 1}∗ ∩ U �= ∅).

The Cantor-Bendixson rank of a tree is an ordinal assessing the branching com-
plexity of a tree. We used a definition taken from [KRS05] which is an adaptation
of the standard notion [Kec94, Exercise 6.17]2.

1 The standard definition consider the smallest α such that L belongs to Vα. It is easy
to see that this two ranks can only differ by at most one.

2 See [KRS05, Rem. 7.2] for a comparison of the two notions.
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For X ⊆ t, we write d(X) for the set of nodes x ∈ X with at least two infinite
branches going through x in X . It is easy to see that if X is prefix closed then
so is d(X). Hence the operation can be iterated as follows:

d0(X) = X, dα+1(X) = d(dα(X)), dλ(X) =
⋂

α<λ

dα(X) for limit λ.

The Cantor-Bendixson rank (CB-rank) of t, noted rCB(t), is the least ordinal α
such that dα(t) = dα+1(t). The tree t is tame if and only if there exists α s.t.
dα = ∅. For tame trees t, we adopt a slightly modified version of the CB-rank,
denoted r̃CB(t), which is the smallest ordinal α such that dα(t) is finite. We have
r̃CB(t) ≤ rCB(t) ≤ r̃CB(t) + 1. For pruned tame trees, the CB-rank of the tree
and the Hausdorff rank of their frontier are tightly linked.

Proposition 5. For every pruned tame tree t,
{
r̃CB(t) = rH(Fr(t)) if r̃CB(t) < ω,
r̃CB(t) = rH(Fr(t)) + 1 otherwise.

As the definition of the CB-rank does not use the relative order between the sons
of a node, the CB-rank only depends on the underlying unordered tree. Given
two deterministic trees t and t′, we denote by t ≡ t′ the fact that t and t′ are
isomorphic when viewed as unordered trees. Formally, t ≡ t′ if there exists a
bijection from t to t′ preserving the ancestor relation (i.e. for all u, v ∈ t, u � v
iff h(u) � h(v)).

Proposition 6. For any two pruned tame trees t and t′, if t ≡ t′ then r̃CB(t) =
r̃CB(t′) and rH(Fr(t)) = rH(Fr(t′)).

5.2 Hausdorff Rank of Scattered Orders in Graphn

From Thm. 3, we know that the pushdown hierarchy is inhabited by scattered
orders with a Hausdorff rank α for every α < ε0. This result can be strengthened,
by considering the successive powers of Z defined as follows:

Z
0 = 1 Z

β+1 = Z
β · ω∗ + Z

β + Z
β · ω

Z
λ =

(
∑

α<λ

Z
α.ω

)∗
+ 1 +

∑

α<λ

Z
α.ω for λ limit.

From [Ros82, Thm. 5.37], the Hausdorff-rank of Z
α is α. Furthermore, Z

α is
complete among the scattered orders of Hausdorff-rank α in the following sense: a
scattered order L has Hausdorff-rank less than α if and only if it is a subordering
of Z

α.

Proposition 7. For all n > 0 and any ordinal α < ω ↑↑ n, Z
α is in Graphn.

For instance, the following deterministic graph is in Graph1. Its unfolding by
the leftmost vertex is in Tree2 and its frontier is Z

ω. Dashed arcs stand for arcs
labeled by 0, plain arcs stand for for arcs labeled by 1.



Linear Orders in the Pushdown Hierarchy 97

. . .

. . .

. . .

. . .

Z
2.ω∗

Z
2.ω

Z
2Z

1

As hinted by the previous proposition, we can show that the Hausdorff rank
of any scattered order in Graphn is strictly less than ω ↑↑ n. This bound is
obtained by reduction to the ordinal case using the following key proposition.

Proposition 8. For any pruned tame tree t, there exists a well-ordered tree t′ such
that t ≡ t′. Furthermore, if t belongs to Treen then t′ can also be chosen in Treen.

Proof (Sketch). Consider the following game played by two players Cantor and
Hausdorff by moving a token on t. The two players play in turn starting with
Cantor. Cantor moves the token to a node anywhere below the current position.
Hausdorff can only move the token to a son of the current position. Cantor loses
the game if the token reaches a leaf.

It is clear that Cantor wins the game if and only if t contains a branching
subset. As t is tame (and hence does not contain any branching subset), Cantor
loses the game.

From the point of view of Hausdorff this game is a reachability game. Hence
Hausdorff has a positional winning strategy: there exists a mapping ϕ : t �→
{0, 1} such that in any play where Hausdorff chooses his moves according to ϕ
(i.e. at node u, Hausdorff picks the ϕ(u)-son) is won by him.

Consider the tree tϕ obtained from t by swapping the two sons of any node u
such that ϕ(u) = 1. It can be shown that tϕ is a well-ordered tree : otherwise,
from an infinite branch in tϕ containing infinitely many 0’s, we could construct
an infinite play in t (i.e. won by Cantor) following ϕ.

It remains to prove that tϕ can be chosen in Treen if t is in Treen. A positional
winning strategy ϕ can be coded by two sets of vertices U0, U1 respectively
corresponding to set of nodes u s.t. ϕ(u) = 0 and ϕ(u) = 1. Consider an MSO-
formula ψ(X0, X1) such that t |= ψ[U0, U1] if and only if U0 and U1 encode a
positional winning strategy for Hausdorff . Let c0 and c1 be two color symbols
that do not appear in t. By Prop. 3, there exist V0 and V1 such that t |= ψ[V0, V1]
and such that t = t ∪ {(c0, v) | v ∈ V0} ∪ {(c1, v) | v ∈ V1} belongs to Treen.

The well-ordered tree tϕ0 corresponding to the strategy ϕ0 encoded by V0

and V1 belongs to Treen. As t belongs to Treen, there exists a graph G in
Graphn−1 and a vertex r of G such that t is isomorphic to Unf(G, r). Consider
the MSO-interpretation I which exchanges the out-going arcs of any vertex col-
ored by c1 and erases the colors c0 and c1. It is easy to check that Unf(I(G), r) is
isomorphic to tϕ0 . ��
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Theorem 5. For all n ≥ 0, every scattered linear order in Graphn has a Haus-
dorff rank strictly less than ω ↑↑ n.

Proof (Sketch). Let L be a scattered linear order in Graphn. By Thm. 1 and
Prop. 4, there exists a pruned tree t ∈ Treen such that L ≡ Fr(t). By Prop. 8
there exists a well-ordered tree t′ ∈ Treen such that t ≡ t′.

By Prop. 6, we have that rH(Fr(t)) = rH(Fr(t′)). As t′ is a well-ordered tree in
Treen, its frontier is an ordinal in Graphn. Hence by Thm. 3, Fr(t′) < ω ↑↑ n+1
and hence rH(Fr(t′)) < ω ↑↑ n. ��

Remark 1. Obviously the converse to this theorem is not true; there are uncount-
ably many scattered orders of Hausdorff rank less than ω ↑↑ n but there are only
countably many linear orderings in Graphn. Consider for instance a non-recursive
sequence (ai)i∈N in {1, 2}ω. The scattered order a0 + ζ + a1 + ζ + a2 + . . . has
Hausdorff rank 2. But as it has an undecidable MSO-theory, it does not belong
to the pushdown hierarchy.

5.3 Cantor-Bendixson Rank of Deterministic Trees

By Prop. 5, Thm. 5 can by directly translated on the CB-rank of pruned tame
trees in Treen. This leads to the following upper bound for all deterministic trees
in Treen.

Theorem 6. For every deterministic tree t ∈ Treen, rCB(t) ≤ ω ↑↑ n.

Proof (Sketch). For every deterministic tree t ∈ Treen, there exists a pruned
tree t′ ∈ Treen with the same CB-rank. The CB-rank of t′ is bounded by the
supremum of the CB-ranks of the tame subtrees of t′. As every subtree of t′ also
belongs to Treen, rCB(t) = rCB(t′) ≤ ω ↑↑ n. ��
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[BÉ09] Bloom, S., Ésik, Z.: Scattered algebraic linear orderings. In: Proc. of FICS
2009, pp. 25–30 (2009)
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