Linear Orders in the Pushdown Hierarchy Laurent Braud and Arnaud Carayol LIGM, Université Paris-Est & CNRS {braud,carayol}@univ-mlv.fr **Abstract.** We investigate the linear orders belonging to the pushdown hierarchy. Our results are based on the characterization of the pushdown hierarchy by graph transformations due to Caucal and do not make any use of higher-order pushdown automata machinery. Our main results show that ordinals belonging to the n-th level are exactly those strictly smaller than the tower of ω of height n+1. More generally the Hausdorff rank of scattered linear orders on the n-th level is strictly smaller than the tower of ω of height n. As a corollary the Cantor-Bendixson rank of the tree solutions of safe recursion schemes of order n is smaller than the tower of ω of height n. As a spin-off result, we show that the ω -words belonging to the second level of the pushdown hierarchy are exactly the morphic words. ### 1 Introduction The pushdown hierarchy (also known as the Caucal hierarchy) is a hierarchy of families of infinite graphs having decidable monadic second-order (MSO) theory. This hierarchy has several equivalent definitions and has received a lot of attention in the last ten years (see [Tho03, Ong07] for surveys). At the first level of this hierarchy are the transition graphs of the pushdown automata which coincide with the prefix-recognizable graphs [Cau96]. Every level can in a similar fashion be characterized as the transitions graphs of an extension of pushdown automata called an higher-order pushdown automata [Mas76]. The rewriting approach of [Cau96] was also extended to all levels in [Car05]. The deterministic trees at level n correspond to the (trees solutions of) safe recursion schemes of order (n-1) [Cau02, KNU02]. An alternative characterization due to Caucal [Cau02, CW03] consists in constructing these graphs by applying MSO-interpretations and graph unfoldings starting from finite trees. The level of a graph in this approach is given by the number of times the unfolding operation has been applied. Despite these various characterizations, one of the main question concerning this hierarchy is to characterize the graphs inhabiting each level and in particular to provide tools for showing that a structure does not belong to a certain level. For instance, to the authors knowledge, the only proof of the strictness of the pushdown hierarchy relies on the strictness of the hierarchy of languages accepted by higher-order pushdown automata obtained in [Eng91]. A partial answer is given in [Blu08] which provides a pumping lemma for these automata. However S. Abramsky et al. (Eds.): ICALP 2010, Part II, LNCS 6199, pp. 88–99, 2010. [©] Springer-Verlag Berlin Heidelberg 2010 the bounds provided in the latter article are not tight and hence do not allow to derive the strictness level by level. This article subscribes to this line of research and characterizes linear orders in the pushdown hierarchy. Linear orders in this hierarchy have first been studied via recursion schemes. A natural way to define a linear order starting from an ordered tree is to consider its frontier *i.e.* its set of leaves ordered lexicographically. This approach was initiated by Courcelle in [Cou78]. Two families of linear orders are of particular interest: the well-orders (or ordinals) and the scattered orders. At the first level of the hierarchy, the scattered frontiers of the regular deterministic tree (order-0 schemes) have an Hausdorff rank strictly less than ω [Hei80] and the ordinals are known to be those strictly smaller than ω^{ω} . At the second level, the frontiers of order-1 recursion schemes are also called algebraic linear orders. Is was shown in [BÉ07, BÉ10] that algebraic ordinals are precisely the ordinals strictly smaller than $\omega^{\omega^{\omega}}$. In [BÉ09], it is shown that any scattered algebraic linear order has a Hausdorff rank strictly smaller than ω^{ω} . They conjecture that similar bounds can be obtained for recursion schemes of arbitrary orders. The results presented in this article prove this conjecture in the case of safe recursion schemes. Our main tool is the characterization of the pushdown hierarchy in terms of graph transformations. In Section 3, we show that any linear order at level n is isomorphic to the frontier of some order-(n-1) safe recursion scheme. We use this result to show that the ω -words on the second level are exactly the morphic words. In Section 4, we show that ordinals at level n are exactly the ordinals below $\omega \uparrow \uparrow (n+1)$ (which stands for the tower of ω of height n+1). The fact that all these ordinals are in at level n was shown in [Bra09]. This result provides a self-contained proof of the strictness of the pushdown hierarchy level by level. In Section 5, we show that the Hausdorff rank of scattered orders on level n is strictly smaller than $\omega \uparrow \uparrow n$. As a corollary we obtain that the Cantor-Bendixson rank of the tree solutions of safe recursion schemes of order n is smaller than $\omega \uparrow \uparrow n$. ### 2 Preliminaries ### 2.1 Linear Orders and Trees A linear order L=(D,<) is given by a set D together with a total order < on D. We write L^* for the linear order $(D,<^*)$ where $x<^*y$ iff y< x. For a detailed presentation of linear orderings, we refer to [Ros82]. $L_1=(D_1,<_1)$ is a subordering of $L_2=(D_2,<_2)$, written $L_1 \leq L_2$, if $D_1 \subseteq D_2$ and $<_1$ is equal to $<_2$ restricted to D_1 . The order type of L is the class of all linear orders isomorphic to L. We denote by $\mathbf{0},\mathbf{1},\omega$ and ζ the order type of the order with 0 and 1 element, $(\mathbb{N},<)$ and $(\mathbb{Z},<)$ respectively. A colored linear order is a mapping from a linear order to a finite set of symbols called colors. A well-order is a linear order for which every non-empty subordering has a smallest element. The order type of a well-order is called an ordinal. We note ε_0 the smallest ordinal such that $\varepsilon_0 = \omega^{\varepsilon_0}$. For all $n \geq 0$, we define $\omega \uparrow \uparrow n$ by taking $\omega \uparrow \uparrow 0 = 1$ and $\omega \uparrow \uparrow (n+1) = \omega^{(\omega \uparrow \uparrow n)}$ for $n \geq 0$. In particular $\varepsilon_0 = \sup \{\omega \uparrow \uparrow n \mid n \geq 0\}$. An ω -word is a colored linear order of order type ω . Let $(\Sigma, <)$ be a finite ordered alphabet. We write Σ^* the set of words over Σ . We write $u \sqsubseteq v$ if u is a prefix of v and $u \bot v$ if $u \not\sqsubseteq v$ and $v \not\sqsubseteq u$. We denote by $u \land v$ the greatest common prefix of u and v. The lexicographic order on Σ^* is defined by: $u <_{\text{lex}} v$ iff $u \sqsubseteq v$ or u = waw' and v = wbw'' with $a < b \in \Sigma$. A deterministic tree t over an ordered alphabet Σ is a prefix-closed subset of Σ^* . If $u \sqsubseteq v$, we say that u is an ancestor of v or equivalently that v is a descendant of u. Elements of t are called nodes and nodes without proper descendant are called leaves. A colored deterministic tree t is a mapping from a deterministic tree t to a finite set of symbols called colors. A deterministic tree is *pruned* if it is binary (i.e. $\Sigma = \{0, 1\}$ with the usual order), *full* (i.e. every node is either a leaf or has two sons) and below every node there is at least one leaf. The frontier of a deterministic tree t, denoted $\mathbf{Fr}(t)$, is the linear order obtained by considering the leaves of t with the lexicographic order. The colored frontier of a deterministic tree t colored by Γ is the mapping from $\mathbf{Fr}(t)$ to Γ associating to each leaf of t its color in t. In the following, whenever we talk about a deterministic tree we always assume that the alphabet is ordered. ### 2.2 Graphs and Monadic Second-Order Logic Let Σ and Γ be two finite sets of arc and vertex labels respectively. Vertex labels are also called colors. A (labeled) graph G is a subset of $V \times \Sigma \times V \cup \Gamma \times V$ where V is a finite or countable arbitrary set. An element (s,a,t) of $V \times \Sigma \times V$ is an arc of $source\ s,\ target\ t$ and $label\ a,$ and is written $s \xrightarrow{a} t$ if G is understood. An element $(c,s) \in \Gamma \times V$ intuitively means that s is colored by c. The set of all vertices appearing in G is its support V_G . A sequence of arcs $s_1 \xrightarrow{a_1} t_1, \ldots, s_k \xrightarrow{a_k} t_k$ with $\forall i \in [2, k], \ s_i = t_{i-1}$ is a path starting from s_1 . We write $s_1 \xrightarrow{u} t_k$ where $u = a_1 \ldots a_k$. A graph is *deterministic* if there are no arcs with the same label that share the same source but not the same target (i.e., for all $a \in \Sigma$, if $s \xrightarrow{a}_{G} t$ and $s \xrightarrow{a}_{G} t'$ then t = t'). A graph G is a *tree* if there exists a vertex r called the *root* such that for any vertex in the graph there exists a unique path from the root r to this vertex. Linear orders and deterministic trees and their respective colored versions can be represented by graphs in a natural way. A linear order (L,<) is represented by the graph $\{(u,<,v)\mid u,v\in L \text{ and } u< v\}$. A deterministic tree t over Σ is represented by the graph $\{(u,a,ua)\mid u,ua\in t \text{ and } a\in \Sigma\}$. In the following, we will not distinguish between these objects and their graph representations. We consider monadic second-order (MSO) logic over graphs with the standard syntax and semantics (see e.g. [EF95] for a detailed presentation). We write $\varphi(X_1, \ldots, X_n, y_1, \ldots, y_m)$ to denote that the free variables of the formula φ are among X_1, \ldots, X_n (monadic second-order) and y_1, \ldots, y_m (first-order). A formula without free variables is called a *sentence*. For a graph G and a sentence φ , we write $G \models \varphi$ if \mathcal{G} satisfies the formula φ . The MSO-theory of G is the set of sentences satisfied by G. For all formula $\varphi(X_1,\ldots,X_n,y_1,\ldots,y_m)$, all sets U_1,\ldots,U_n of nodes of G and all nodes v_1,\ldots,v_m of G, we write $G \models \varphi[U_1,\ldots,U_n,v_1,\ldots,v_m]$ to express that φ holds in G when X_i is interpreted as U_i for all $i \in [1,n]$ and y_j is interpreted as v_j for all $j \in [1,m]$. ### 2.3 Graph Transformations The unfolding $\operatorname{Unf}(G,r)$ of a graph G from a vertex $r \in V_G$ is the tree T s.t. for all $a \in \Sigma$, $\pi \xrightarrow{a} \pi' \in T$ if and only if π and π' are two paths in G starting from r and $\pi' = \pi \cdot (s \xrightarrow{a} t)$. Moreover for any color $c \in \Gamma$, $(c, \pi) \in T$ if and only if π is a path in G starting with r and ending in t with $(c, t) \in G$. An MSO-interpretation is given by a family $\mathcal{I} = (\varphi_a(x,y))_{a \in \Sigma} \cup (\varphi_c(x))_{c \in \Gamma}$ of MSO-formulas. Applying such an MSO-interpretation to a graph G we obtain the graph $\mathcal{I}(G)$ labeled by Σ and colored by Γ and s.t. for all $a \in \Sigma$, $(u, a, v) \in \mathcal{I}(G)$ iff $G \models \varphi_a(u, v)$ and for all $c \in \Gamma$, $(c, u) \in \mathcal{I}(G)$ iff $G \models \varphi_c(u)$. An MSO-coloring is a particular MSO-interpretation that only affects colors and leaves the arcs unchanged (i.e., for all $a \in \Sigma$, $\varphi_a(x,y) = x \xrightarrow{a} y$). Interpretations cannot increase the size of a structure. To overcome this weakness the notion of a transduction was introduced [Cou94]. Let $K = \{k_1, \ldots, k_m\}$ be a finite set disjoint from Σ . A K-copying operation applied to G adds, to every vertex of G, m out-going arcs labeled resp. by k_1, \ldots, k_n all going to fresh vertices. An MSO-transduction \mathcal{T} is a K-copying operation followed by an MSO-interpretation \mathcal{I} . #### 2.4 MSO on Deterministic Trees A non-deterministic tree-walking automaton (TWA) working on deterministic trees over Σ colored by Γ is a tuple $W=(Q,q_0,F,\Delta)$ where Q is the finite set of states, $q_0\in Q$ is the initial state, F is the set of final states and Δ is the set of transitions. A transition is a tuple (p,c,q,a) with $p\in Q$ and $c\in \Gamma$ – corresponding respectively to the current state and the color of the current node – $q\in Q$ and $a\in (\{\uparrow,\varepsilon\}\cup \Sigma)$ – q being the new state and a the action to perform. Intuitively ε corresponds to "stay in the current node", \uparrow to "go to the parent node" and $d\in \Sigma$ corresponds to "go to the d-son". We say that W accepts a pair of nodes (u,v) if it can reach v in a final state starting from u in the initial state. **Proposition 1** ([Car06, Prop. 3.2.1]). For any deterministic tree t and any MSO-formula $\varphi(x, y)$, there exists an MSO-coloring \mathcal{M} and a TWA \mathcal{A} such that $t \models \varphi[u, v]$ iff \mathcal{A} accepts (u, v) on $\mathcal{M}(t)$. ### 2.5 The Pushdown Hierarchy Following [Cau02], we define the pushdown hierarchy by iterating MSO-interpretations and unfoldings starting from finite graphs. Tree₀ = the class of finite trees $Graph_n$ = the class of graphs MSO-interpretable in a tree of Tree_n $Tree_{n+1}$ = the class of the unfoldings of graphs in $Graph_n$. All the graphs in $Graph_n$ have a decidable MSO-theory. Furthermore the hierarchy is unchanged if we require that any graph in $Graph_n$ is MSO-interpreted in a **deterministic** tree in $Tree_n$ [CW03]. We only recall the two properties that will be used in this article. For a more detailed presentation, we refer the reader to [Th003]. **Proposition 2** ([CW03]). For all n, the deterministic trees of Tree_n are closed under MSO-coloring and $Graph_n$ is closed under MSO-transduction. **Proposition 3 ([Fra05, Car06]).** Take t a deterministic tree in Tree_n , $\varphi(X)$ a MSO-formula and \$ a fresh color symbol. If $t \models \exists X \varphi(X)$ then there exists $U \subseteq t$ s.t. $t \models \varphi[U]$ and $t \cup \{(\$, u) \mid u \in U\}$ also belongs to Tree_n . # 3 Frontiers of Trees in the Pushdown Hierarchy In this section, we show that every (colored) linear order in Graph_n is the (colored) frontier of a pruned tree in Tree_n . Remark that as the lexicographic order on a deterministic tree is definable in MSO logic, the frontiers of the deterministic trees in Tree_n belongs to Graph_n . The following theorem establishes the converse inclusion. **Theorem 1.** Each colored linear order in $Graph_n$ is the frontier of a colored pruned tree in $Tree_n$. *Proof (Sketch)*. To simplify the presentation, we focus on the uncolored case. Let $L = (D, <_L)$ be a linear order in Graph_n for some $n \ge 0$. Using the definition of Graph_n and Prop. 1 and 2, we have that there exists a colored deterministic tree $t \in \operatorname{Tree}_n$ and a TWA $\mathcal A$ such that D is a set of nodes of t and for all $u, v \in D$, $u <_L v$ iff $\mathcal A$ accepts (u, v). We can w.l.o.g. assume that D is the set of leaves of t. For instance, it is enough to add a new leaf below every node of D and to modify $\mathcal A$ accordingly. The following construction rearranges the leaves of t into a new deterministic tree $s(t) \in \text{Tree}_n$ so that lexicographic order on the leaves of s(t) matches $<_L$ on the leaves of t. It is easy to adapt the definition of s(t) to obtain a pruned tree (while remaining in Tree_n). For all leaf $u \in D$ and for all $v \sqsubset u \in D$, we define s(u, v) as the maximal length of a decreasing sequence $u_0 >_L u_1 >_L \ldots >_L u_k$ of leaves starting with $u_0 = u$ and such that for $i \in [0, k-1]$, $u_i \land u_{i+1} = v$. Using a pumping argument on \mathcal{A} , we can show that there exists $n_0 \ge 1$ such that for every leaf $u \in D$ and all nodes $v \sqsubset u$, $s(u, v) \le n_0$. To every leaf $u = u_1 \cdots u_n$, we associate the finite sequence $\mathbf{s}(u)$ in $[1, n_0]^n$ defined by $\mathbf{s}(u) = (s(u, \varepsilon), s(u, u_1), \dots, s(u, u_1 \cdots u_{n-1}))$. The key property of this sequence is that comparing two leaves u and v with $<_L$ is equivalent to comparing $\mathbf{s}(u)$ and $\mathbf{s}(v)$ using the lexicographic order, i.e. $u <_L v$ iff $\mathbf{s}(u) <_{\text{lex}} \mathbf{s}(v)$. Consider the tree s(t) over the finite alphabet $[1, n_0]$ obtained by taking the prefix-closure of $\{s(u) \mid u \text{ leaf of } t)\}$. The frontier of s(t) is isomorphic to $(D, <_L)$. These definitions are illustrated on the finite example below; t is on the left and s(t) is on the right; for each leaf x, we give its order for $<_L$ and the sequence s(x). The last step of the proof is to show that s(t) also belongs to Tree_n. We know from [Cau02] that the infinite terms in Tree_n are the terms solutions of safe recursive schemes of order (n-1) (we refer the reader to [KNU02] for a formal definition of safe recursion schemes). Hence the previous theorem can be restated as follows. **Corollary 1.** A linear order colored by Γ is in Graph_n if and only if it is the colored frontier of some tree solution of a safe recursion scheme of order (n-1) with one terminal f of arity 2 and terminal of arity 0 for each $c \in \Gamma$. As a first application of this result, we show that ω -words in Graph₂ are precisely the morphic words. A morphic word over a finite alphabet Γ is given by a letter $\Delta \in \Gamma$ and two morphisms τ and $\sigma : \Gamma \mapsto \Gamma^*$ such that $\tau(\Delta) = \Delta .u$ with $u \in \Gamma^*$. The associated ω -word is $\sigma(\tau^{\omega}(\Delta))$. For instance, the morphic word $abaab \dots a^{2^i}b \dots$ is given by the morphisms τ and σ defined by: $\tau(\Delta) = \Delta baa$, $\tau(a) = aa$, $\tau(b) = b$ and $\sigma(\Delta) = a$, $\sigma(a) = a$, $\sigma(b) = b$. A direct consequence of [Cau02, Prop. 3.2] is that the morphic words belong to Graph₂. For the other direction, by Corollary 1 we only need to consider the frontier of trees solutions of order-1 schemes. As their frontier are of order type ω , these trees have at most one infinite branch which is also their right-most branch. This constraint leads to a strong normal form for the associated schemes which easily allows to show that their colored frontiers are morphic words. **Theorem 2.** The ω -words of Graph₂ are the morphic words. # 4 Ordinals In this section, we characterize the ordinals in the pushdown hierarchy. In [Bra09], ordinals below $\omega \uparrow \uparrow (n+1)$ are shown to be in Graph_n. We show that they are the only ordinals in Graph_n. By Theorem 1, we only need to consider frontiers of pruned trees. Pruned trees with a well-ordered frontier are easily characterized. **Definition 1.** A pruned tree is well-ordered if it does not have any infinite branch containing infinitely many 0's. The frontier of a pruned tree t is an ordinal if and only if t is a well-ordered tree. **Theorem 3.** For all $n \geq 0$ and ordinal α , $\alpha \in \operatorname{Graph}_n$ if and only if $\alpha < \omega \uparrow \uparrow (n+1)$. *Proof* (Sketch). As previously mentioned, we only need to show that for all $n \geq 0$, for any well-ordered tree $t \in \text{Tree}_n$, $\text{Fr}(t) < \omega \uparrow \uparrow (n+1)$. We proceed by induction on the level n. The case n = 0 is obvious. Let t be a well-ordered tree in Tree_{n+1} . By definition of Tree_{n+1} , there exists a graph $G \in \text{Graph}_n$ and a vertex $r \in V_G$ such that t = Unf(G, r). Furthermore, we can assume w.l.o.g. that every vertex of G is reachable from r. We are going to consider a particular spanning tree T of G rooted at r such that T is MSO-interpretable in G. For every node $s \in V_G$, let $\ell(s)$ be the minimal $w \in \{0,1\}^*$ (for the lexicographic order) such that $r \xrightarrow{w} s$. The existence of $\ell(s)$ is ensured by the fact that G unfolds from r into a well-ordered tree. The spanning tree T is defined as the set of arcs $\{s \xrightarrow{a} t \mid \ell(t) = \ell(s) \cdot a\}$. For technical reasons, we consider the pruned tree \overline{T} obtained by adding dummy leaves below some nodes of T in such a way that their out-degree in \overline{T} is equal to their out-degree in G. As any infinite branch of \overline{T} is also an infinite branch of t, \overline{T} is a well-ordered. As \overline{T} can be MSO-transducted in G, it belongs to Graph_n together with its frontier. Hence by induction hypothesis, $\mathbf{Fr}(\overline{T}) < \omega \uparrow \uparrow (n+1)$. The key property that allows us to conclude is that $\mathbf{Fr}(t) \leq \omega^{\mathbf{Fr}(\overline{T})}$. To establish this inequality, recall that $\omega^{\mathbf{Fr}(\overline{T})}$ is isomorphic to the set of (nonstrictly) decreasing sequences of ordinals below $\mathbf{Fr}(\overline{T})$ with the lexicographic order. Hence it is enough to show that there exists an injective mapping Φ from the leaves of t to the finite decreasing sequences of leaves of \overline{T} s.t. Φ preserves the lexicographic order. Recall that a leaf u of t corresponds to a path π_u in G starting from r. Intuitively Φ associates to a leaf u of t the sequence of leaves of \overline{T} corresponding to the sequence of arcs in $G \setminus T$ along the path π_u . The above example shows from left to right G where dark arcs belong to T, then \overline{T} and finally $\mathrm{Unf}(G,r)$. Here, $\mathrm{Fr}(\mathrm{Unf}(G,r))=\omega^2+\omega$. This result gives an alternative proof of the strictness of the pushdown hierarchy and shows that ε_0 does not belong to this hierarchy. ### 5 Scattered Linear Orders In this section, we consider the scattered linear orders in the pushdown hierarchy. A linear order is *scattered* if it does not contain any dense subordering. Ordinals are a particular case of scattered linear orders. However, scattered orders are not necessarily well-orderings; consider for instance ζ or $\omega + \omega^*$. For a detailed presentation, we refer the reader to [Ros82]. For countable scattered orders, a more constructive characterization is provided by Hausdorff Theorem which also gives a measure of the *complexity* of such orders. From now on, we only consider countable scattered orders. Theorem 4 (Hausdorff [Hau08]). A countable linear order is scattered iff it belongs to $$S = \bigcup_{\alpha} V_{\alpha}$$ where $V_0 = \{0, 1\}$ and $V_{\beta} = \{\sum_{i \in \zeta} L_i \mid \forall i, L_i \in \bigcup_{\alpha < \beta} V_{\alpha} \}$. The Hausdorff rank¹ of a scattered order L, written $r_H(L)$, is the smallest α such that L can be expressed as a finite sum of elements of V_{α} . For instance, we have $r_H(\zeta) = r_H(\omega) = r_H(\omega + \omega^*) = 1$. The Hausdorff rank of the ordinal ω^{α} is equal to α . In particular if α is written $\sum_{i=1}^{k} \omega^{\alpha_i}$ with $\alpha_1 \geq \ldots \geq \alpha_k$ in Cantor's normal form then $r_H(\alpha) = \alpha_1$. ### 5.1 Trees with Scattered Frontiers An alternative characterization of countable scattered orders can be obtained by considering trees having these orders as frontier. The countable scattered orders are those which are frontiers of trees with only countably many infinite branches also called *tame trees*. The following proposition is part of the folklore. **Proposition 4.** Let t be a pruned tree, the following propositions are equivalent: - 1. $\mathbf{Fr}(t)$ is a scattered linear order, - 2. t has countably many infinite branches, - 3. t does not contain any branching subset (i.e. a non-empty subset $U \subseteq t$ such that for all $u \in U$, $u0\{0,1\}^* \cap U \neq \emptyset$ and $u1\{0,1\}^* \cap U \neq \emptyset$). The Cantor-Bendixson rank of a tree is an ordinal assessing the branching complexity of a tree. We used a definition taken from [KRS05] which is an adaptation of the standard notion [Kec94, Exercise 6.17]². ¹ The standard definition consider the smallest α such that L belongs to V_{α} . It is easy to see that this two ranks can only differ by at most one. $^{^2}$ See [KRS05, Rem. 7.2] for a comparison of the two notions. For $X \subseteq t$, we write d(X) for the set of nodes $x \in X$ with at least two infinite branches going through x in X. It is easy to see that if X is prefix closed then so is d(X). Hence the operation can be iterated as follows: $$d^0(X) = X, \quad d^{\alpha+1}(X) = d(d^\alpha(X)), \quad d^\lambda(X) = \bigcap_{\alpha < \lambda} d^\alpha(X) \text{ for limit } \lambda.$$ The Cantor-Bendixson rank (CB-rank) of t, noted $r_{CB}(t)$, is the least ordinal α such that $d^{\alpha}(t) = d^{\alpha+1}(t)$. The tree t is tame if and only if there exists α s.t. $d^{\alpha} = \emptyset$. For tame trees t, we adopt a slightly modified version of the CB-rank, denoted $\tilde{r}_{CB}(t)$, which is the smallest ordinal α such that $d^{\alpha}(t)$ is finite. We have $\tilde{r}_{CB}(t) \leq r_{CB}(t) \leq \tilde{r}_{CB}(t) + 1$. For pruned tame trees, the CB-rank of the tree and the Hausdorff rank of their frontier are tightly linked. **Proposition 5.** For every pruned tame tree t, $$\begin{cases} \tilde{r}_{CB}(t) = r_H(\mathbf{Fr}(t)) & \text{if } \tilde{r}_{CB}(t) < \omega, \\ \tilde{r}_{CB}(t) = r_H(\mathbf{Fr}(t)) + 1 & \text{otherwise.} \end{cases}$$ As the definition of the CB-rank does not use the relative order between the sons of a node, the CB-rank only depends on the underlying unordered tree. Given two deterministic trees t and t', we denote by $t \equiv t'$ the fact that t and t' are isomorphic when viewed as unordered trees. Formally, $t \equiv t'$ if there exists a bijection from t to t' preserving the ancestor relation (i.e. for all $u, v \in t$, $u \sqsubseteq v$ iff $h(u) \sqsubseteq h(v)$). **Proposition 6.** For any two pruned tame trees t and t', if $t \equiv t'$ then $\tilde{r}_{CB}(t) = \tilde{r}_{CB}(t')$ and $r_H(\mathbf{Fr}(t)) = r_H(\mathbf{Fr}(t'))$. ### 5.2 Hausdorff Rank of Scattered Orders in Graph, From Thm. 3, we know that the pushdown hierarchy is inhabited by scattered orders with a Hausdorff rank α for every $\alpha < \varepsilon_0$. This result can be strengthened, by considering the successive powers of \mathbb{Z} defined as follows: $$\mathbb{Z}^{0} = 1 \qquad \mathbb{Z}^{\beta+1} = \mathbb{Z}^{\beta} \cdot \omega^{*} + \mathbb{Z}^{\beta} + \mathbb{Z}^{\beta} \cdot \omega$$ $$\mathbb{Z}^{\lambda} = \left(\sum_{\alpha < \lambda} \mathbb{Z}^{\alpha} . \omega\right)^{*} + 1 + \sum_{\alpha < \lambda} \mathbb{Z}^{\alpha} . \omega \qquad \text{for } \lambda \text{ limit.}$$ From [Ros82, Thm. 5.37], the Hausdorff-rank of \mathbb{Z}^{α} is α . Furthermore, \mathbb{Z}^{α} is complete among the scattered orders of Hausdorff-rank α in the following sense: a scattered order L has Hausdorff-rank less than α if and only if it is a subordering of \mathbb{Z}^{α} . **Proposition 7.** For all n > 0 and any ordinal $\alpha < \omega \uparrow \uparrow n$, \mathbb{Z}^{α} is in Graph_n. For instance, the following deterministic graph is in Graph₁. Its unfolding by the leftmost vertex is in Tree₂ and its frontier is \mathbb{Z}^{ω} . Dashed arcs stand for arcs labeled by 0, plain arcs stand for for arcs labeled by 1. As hinted by the previous proposition, we can show that the Hausdorff rank of any scattered order in Graph_n is strictly less than $\omega \uparrow \uparrow n$. This bound is obtained by reduction to the ordinal case using the following key proposition. **Proposition 8.** For any pruned tame tree t, there exists a well-ordered tree t' such that $t \equiv t'$. Furthermore, if t belongs to Tree_n then t' can also be chosen in Tree_n. $Proof\ (Sketch)$. Consider the following game played by two players Cantor and Hausdorff by moving a token on t. The two players play in turn starting with Cantor. Cantor moves the token to a node anywhere below the current position. Hausdorff can only move the token to a son of the current position. Cantor loses the game if the token reaches a leaf. It is clear that Cantor wins the game if and only if t contains a branching subset. As t is tame (and hence does not contain any branching subset), Cantor loses the game. From the point of view of Hausdorff this game is a reachability game. Hence Hausdorff has a positional winning strategy: there exists a mapping $\varphi: t \mapsto \{0,1\}$ such that in any play where Hausdorff chooses his moves according to φ (i.e. at node u, Hausdorff picks the $\varphi(u)$ -son) is won by him. Consider the tree t_{φ} obtained from t by swapping the two sons of any node u such that $\varphi(u) = 1$. It can be shown that t_{φ} is a well-ordered tree : otherwise, from an infinite branch in t_{φ} containing infinitely many 0's, we could construct an infinite play in t (i.e. won by Cantor) following φ . It remains to prove that t_{φ} can be chosen in Tree_n if t is in Tree_n. A positional winning strategy φ can be coded by two sets of vertices U_0, U_1 respectively corresponding to set of nodes u s.t. $\varphi(u)=0$ and $\varphi(u)=1$. Consider an MSO-formula $\psi(X_0,X_1)$ such that $t\models\psi[U_0,U_1]$ if and only if U_0 and U_1 encode a positional winning strategy for Hausdorff . Let c_0 and c_1 be two color symbols that do not appear in t. By Prop. 3, there exist V_0 and V_1 such that $t\models\psi[V_0,V_1]$ and such that $\overline{t}=t\cup\{(c_0,v)\mid v\in V_0\}\cup\{(c_1,v)\mid v\in V_1\}$ belongs to Tree_n. The well-ordered tree t_{φ_0} corresponding to the strategy φ_0 encoded by V_0 and V_1 belongs to Tree_n . As \overline{t} belongs to Tree_n , there exists a graph G in $\operatorname{Graph}_{n-1}$ and a vertex r of G such that \overline{t} is isomorphic to $\operatorname{Unf}(G,r)$. Consider the MSO-interpretation \mathcal{I} which exchanges the out-going arcs of any vertex colored by c_1 and erases the colors c_0 and c_1 . It is easy to check that $\operatorname{Unf}(\mathcal{I}(G),r)$ is isomorphic to t_{φ_0} . **Theorem 5.** For all $n \geq 0$, every scattered linear order in Graph_n has a Hausdorff rank strictly less than $\omega \uparrow \uparrow n$. *Proof (Sketch).* Let L be a scattered linear order in Graph_n. By Thm. 1 and Prop. 4, there exists a pruned tree $t \in \text{Tree}_n$ such that $L \equiv \mathbf{Fr}(t)$. By Prop. 8 there exists a well-ordered tree $t' \in \text{Tree}_n$ such that $t \equiv t'$. By Prop. 6, we have that $r_H(\mathbf{Fr}(t)) = r_H(\mathbf{Fr}(t'))$. As t' is a well-ordered tree in Tree_n, its frontier is an ordinal in Graph_n . Hence by Thm. 3, $\mathbf{Fr}(t') < \omega \uparrow \uparrow n+1$ and hence $r_H(\mathbf{Fr}(t')) < \omega \uparrow \uparrow n$. Remark 1. Obviously the converse to this theorem is not true; there are uncountably many scattered orders of Hausdorff rank less than $\omega \uparrow \uparrow n$ but there are only countably many linear orderings in Graph_n . Consider for instance a non-recursive sequence $(a_i)_{i\in\mathbb{N}}$ in $\{1,2\}^\omega$. The scattered order $a_0+\zeta+a_1+\zeta+a_2+\ldots$ has Hausdorff rank 2. But as it has an undecidable MSO-theory, it does not belong to the pushdown hierarchy. #### 5.3 Cantor-Bendixson Rank of Deterministic Trees By Prop. 5, Thm. 5 can by directly translated on the CB-rank of pruned tame trees in Tree_n . This leads to the following upper bound for all deterministic trees in Tree_n . **Theorem 6.** For every deterministic tree $t \in \text{Tree}_n$, $r_{CB}(t) \leq \omega \uparrow \uparrow n$. *Proof (Sketch).* For every deterministic tree $t \in \text{Tree}_n$, there exists a pruned tree $t' \in \text{Tree}_n$ with the same CB-rank. The CB-rank of t' is bounded by the supremum of the CB-ranks of the tame subtrees of t'. As every subtree of t' also belongs to Tree_n , $r_{CB}(t) = r_{CB}(t') \leq \omega \uparrow \uparrow n$. **Acknowledgment.** The authors would like to thank the anonymous referees for their helpful comments. #### References - [BÉ07] Bloom, S., Ésik, Z.: Regular and algebraic words and ordinals. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 1–15. Springer, Heidelberg (2007) - [BÉ09] Bloom, S., Ésik, Z.: Scattered algebraic linear orderings. In: Proc. of FICS 2009, pp. 25–30 (2009) - [BÉ10] Bloom, S., Ésik, Z.: Algebraic ordinals. Fundamenta Informaticae (2010) (to appear) - [Blu08] Blumensath, A.: On the structure of graphs in the Caucal hierarchy. TCS 400(1-3), 19–45 (2008) - [Bra09] Braud, L.: Covering of ordinals. In: Proc. FSTTCS 2009, pp. 97–108 (2009) - [Car05] Carayol, A.: Regular sets of higher-order pushdown stacks. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 168–179. Springer, Heidelberg (2005) - [Car06] Carayol, A.: Automates infinis, logiques et langages. PhD thesis, Université de Rennes 1 (2006) - [Cau96] Caucal, D.: On infinite transition graphs having a decidable monadic theory. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 194–205. Springer, Heidelberg (1996) - [Cau02] Caucal, D.: On infinite terms having a decidable monadic theory. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg (2002) - [Cou78] Courcelle, B.: Frontiers of infinite trees. RAIRO 12, 319–337 (1978) - [Cou94] Courcelle, B.: Monadic second-order definable graph transductions: A survey. TCS 126, 53–75 (1994) - [CW03] Carayol, A., Wöhrle, S.: The Caucal hierarchy of infinite graphs in terms of logic and higher-order pushdown automata. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 112–123. Springer, Heidelberg (2003) - [EF95] Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Springer, Heidelberg (1995) - [Eng91] Engelfriet, J.: Iterated stack automata and complexity classes. Inf. Comp. 95(1), 21–75 (1991) - [Fra05] Fratani, S.: Automates à piles de piles. de piles. PhD thesis, Université Bordeaux 1 (2005) - [Hau08] Hausdorff, F.: Grundzüge einer theorie der geordnete mengen. Math. Ann. 65, 435–505 (1908) - [Hei80] Heilbrunner, S.: An algorithm for the solution of fixed-point equations for infinite words. ITA 14(2), 131–141 (1980) - [Kec94] Kechris, A.: Classical Descriptive Set Theory. Springer, Heidelberg (1994) - [KNU02] Knapik, T., Niwinski, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 205–222. Springer, Heidelberg (2002) - [KRS05] Khoussainov, B., Rubin, S., Stephan, F.: Automatic linear orders and trees. ACM Trans. Comput. Log. 6(4), 675–700 (2005) - [Mas76] Maslov, A.N.: Multi-level stack automata. Problems Information Transmission 12, 38–43 (1976) - [Ong07] Ong, L.: Hierarchies of infinite structures generated by pushdown automata and recursion schemes. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 15–21. Springer, Heidelberg (2007) - [Ros82] Rosenstein, J.: Linear orderings. Academic Press Inc., London (1982) - [Tho03] Thomas, W.: Constructing infinite graphs with a decidable MSO-theory. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 113–124. Springer, Heidelberg (2003)