Skip to main content

Linear Orders in the Pushdown Hierarchy

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6199))

Included in the following conference series:

Abstract

We investigate the linear orders belonging to the pushdown hierarchy. Our results are based on the characterization of the pushdown hierarchy by graph transformations due to Caucal and do not make any use of higher-order pushdown automata machinery.

Our main results show that ordinals belonging to the n-th level are exactly those strictly smaller than the tower of ω of height n + 1. More generally the Hausdorff rank of scattered linear orders on the n-th level is strictly smaller than the tower of ω of height n. As a corollary the Cantor-Bendixson rank of the tree solutions of safe recursion schemes of order n is smaller than the tower of ω of height n.

As a spin-off result, we show that the ω-words belonging to the second level of the pushdown hierarchy are exactly the morphic words.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bloom, S., Ésik, Z.: Regular and algebraic words and ordinals. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 1–15. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Bloom, S., Ésik, Z.: Scattered algebraic linear orderings. In: Proc. of FICS 2009, pp. 25–30 (2009)

    Google Scholar 

  3. Bloom, S., Ésik, Z.: Algebraic ordinals. Fundamenta Informaticae (2010) (to appear)

    Google Scholar 

  4. Blumensath, A.: On the structure of graphs in the Caucal hierarchy. TCS 400(1-3), 19–45 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Braud, L.: Covering of ordinals. In: Proc. FSTTCS 2009, pp. 97–108 (2009)

    Google Scholar 

  6. Carayol, A.: Regular sets of higher-order pushdown stacks. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 168–179. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Carayol, A.: Automates infinis, logiques et langages. PhD thesis, Université de Rennes 1 (2006)

    Google Scholar 

  8. Caucal, D.: On infinite transition graphs having a decidable monadic theory. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 194–205. Springer, Heidelberg (1996)

    Google Scholar 

  9. Caucal, D.: On infinite terms having a decidable monadic theory. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Courcelle, B.: Frontiers of infinite trees. RAIRO 12, 319–337 (1978)

    MATH  MathSciNet  Google Scholar 

  11. Courcelle, B.: Monadic second-order definable graph transductions: A survey. TCS 126, 53–75 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Carayol, A., Wöhrle, S.: The Caucal hierarchy of infinite graphs in terms of logic and higher-order pushdown automata. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 112–123. Springer, Heidelberg (2003)

    Google Scholar 

  13. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  14. Engelfriet, J.: Iterated stack automata and complexity classes. Inf. Comp. 95(1), 21–75 (1991)

    Article  MathSciNet  Google Scholar 

  15. Fratani, S.: Automates à piles de piles.. de piles. PhD thesis, Université Bordeaux 1 (2005)

    Google Scholar 

  16. Hausdorff, F.: Grundzüge einer theorie der geordnete mengen. Math. Ann. 65, 435–505 (1908)

    Article  MATH  MathSciNet  Google Scholar 

  17. Heilbrunner, S.: An algorithm for the solution of fixed-point equations for infinite words. ITA 14(2), 131–141 (1980)

    MATH  MathSciNet  Google Scholar 

  18. Kechris, A.: Classical Descriptive Set Theory. Springer, Heidelberg (1994)

    Google Scholar 

  19. Knapik, T., Niwinski, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 205–222. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Khoussainov, B., Rubin, S., Stephan, F.: Automatic linear orders and trees. ACM Trans. Comput. Log. 6(4), 675–700 (2005)

    Article  MathSciNet  Google Scholar 

  21. Maslov, A.N.: Multi-level stack automata. Problems Information Transmission 12, 38–43 (1976)

    Google Scholar 

  22. Ong, L.: Hierarchies of infinite structures generated by pushdown automata and recursion schemes. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 15–21. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Rosenstein, J.: Linear orderings. Academic Press Inc., London (1982)

    MATH  Google Scholar 

  24. Thomas, W.: Constructing infinite graphs with a decidable MSO-theory. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 113–124. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Braud, L., Carayol, A. (2010). Linear Orders in the Pushdown Hierarchy. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14162-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14162-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14161-4

  • Online ISBN: 978-3-642-14162-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics