Abstract
Non-malleable encryption schemes make it infeasible for adversaries provided with an encryption of some plaintext m to compute another ciphertext encrypting a plaintext m′ that is related to m. At ICALP’05, Fischlin suggested a stronger notion, called complete non-malleability, where non-malleability should be preserved against adversaries attempting to compute encryptions of related plaintexts under newly generated public keys. This new notion applies to systems where on-line certificate authorities are available and users can issue keys on-the-fly. It was originally motivated by the design of non-malleable commitments from public key encryption (i.e., extractable commitments), for which the usual flavor of non-malleability does not suffice. Completely non-malleable encryption schemes are known not to exist w.r.t. black-box simulation in the standard model (although constructions are possible in the random oracle model). One of the original motivations of Fischlin’s work was to have non-malleable commitments without preconditions.
At PKC’08, Ventre and Visconti investigated complete non malleability as a general notion suitable for protocol design, and departed from only considering it as a tool for commitment schemes without preconditions. Indeed, if one allows members of a community to generate public keys “on the fly”, then considering the notion is justified: For example, if a bidder in an auction scheme can, in the middle of the auction process, register a public key which is malleable with respect to a scheme used in an already submitted bid, he may produce a slightly higher bid without even knowing the already submitted bid. Only when the latter is opened he may be able to open its bid. In this more general context, Ventre and Visconti showed that completely non malleable schemes do exist in the standard model; in fact in the shared random string model as well as in the interactive setting. Their non-interactive scheme is, however, inefficient as it relies on the generic NIZK approach. They left the existence of efficient schemes in the common reference string model open. In this work we describe the first efficient constructions that are completely non-malleable in this standard model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 26. Springer, Heidelberg (1998)
Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM CCS (1993)
Bellare, M., Rogaway, P.: Optimal asymmetric encryption - how to encrypt with RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)
Bellare, M., Sahai, A.: Non-malleable Encryption: Equivalence between Two Notions, and an Indistinguishability-Based Characterization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 519. Springer, Heidelberg (1999)
Boldyreva, A., Fehr, S., O’Neill, A.: On Notions of Security for Deterministic Encryption, and Efficient Constructions without Random Oracles. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)
Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)
Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM Journal of Computing 32(3), 586–615 (2003)
Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. Journal of the ACM 51(4) (2004)
Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)
Choi, S.-G., Dachman-Soled, D., Malkin, T., Wee, H.: Black-box construction of a non-malleable encryption scheme from any semantically secure one. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 427–444. Springer, Heidelberg (2008)
Cramer, R., Shoup, V.: A Practical Public-Key Cryptosystem Provably Secure Against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 13. Springer, Heidelberg (1998)
Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, p. 45. Springer, Heidelberg (2002)
Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: STOC 1991, pp. 542–552. ACM Press, New York (1991)
Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. on Information Theory 29(2), 198–207 (1983)
Fischlin, M.: Completely Non-malleable Schemes. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 779–790. Springer, Heidelberg (2005)
Freeman, D., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More Constructions of Lossy and Correlation-Secure Trapdoor Functions. In: PKC 2010. LNCS. Springer, Heidelberg (2010)
Goldwasser, S., Micali, S.: Probabilistic Encryption. J. Comput. Syst. Sci. 28(2) (1984)
Herzog, J., Liskov, M., Micali, S.: Plaintext Awareness via Key Registration. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 548–564. Springer, Heidelberg (2003)
Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 223. Springer, Heidelberg (1999)
Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a Non-malleable Encryption Scheme from Any Semantically Secure One. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg (2006)
Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC 2008. ACM Press, New York (2008)
Rackoff, C., Simon, D.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)
Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: STOC 1990. ACM Press, New York (1990)
Sahai, A.: Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-Ciphertext Security. In: FOCS 1999 (1999)
Ventre, C., Visconti, I.: Completely non-malleable encryption revisited. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 65–84. Springer, Heidelberg (2008)
Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Libert, B., Yung, M. (2010). Efficient Completely Non-malleable Public Key Encryption . In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14165-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-14165-2_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14164-5
Online ISBN: 978-3-642-14165-2
eBook Packages: Computer ScienceComputer Science (R0)