Skip to main content

Efficient Completely Non-malleable Public Key Encryption

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6198))

Included in the following conference series:

Abstract

Non-malleable encryption schemes make it infeasible for adversaries provided with an encryption of some plaintext m to compute another ciphertext encrypting a plaintext m′ that is related to m. At ICALP’05, Fischlin suggested a stronger notion, called complete non-malleability, where non-malleability should be preserved against adversaries attempting to compute encryptions of related plaintexts under newly generated public keys. This new notion applies to systems where on-line certificate authorities are available and users can issue keys on-the-fly. It was originally motivated by the design of non-malleable commitments from public key encryption (i.e., extractable commitments), for which the usual flavor of non-malleability does not suffice. Completely non-malleable encryption schemes are known not to exist w.r.t. black-box simulation in the standard model (although constructions are possible in the random oracle model). One of the original motivations of Fischlin’s work was to have non-malleable commitments without preconditions.

At PKC’08, Ventre and Visconti investigated complete non malleability as a general notion suitable for protocol design, and departed from only considering it as a tool for commitment schemes without preconditions. Indeed, if one allows members of a community to generate public keys “on the fly”, then considering the notion is justified: For example, if a bidder in an auction scheme can, in the middle of the auction process, register a public key which is malleable with respect to a scheme used in an already submitted bid, he may produce a slightly higher bid without even knowing the already submitted bid. Only when the latter is opened he may be able to open its bid. In this more general context, Ventre and Visconti showed that completely non malleable schemes do exist in the standard model; in fact in the shared random string model as well as in the interactive setting. Their non-interactive scheme is, however, inefficient as it relies on the generic NIZK approach. They left the existence of efficient schemes in the common reference string model open. In this work we describe the first efficient constructions that are completely non-malleable in this standard model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 26. Springer, Heidelberg (1998)

    Google Scholar 

  2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM CCS (1993)

    Google Scholar 

  3. Bellare, M., Rogaway, P.: Optimal asymmetric encryption - how to encrypt with RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  4. Bellare, M., Sahai, A.: Non-malleable Encryption: Equivalence between Two Notions, and an Indistinguishability-Based Characterization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 519. Springer, Heidelberg (1999)

    Google Scholar 

  5. Boldyreva, A., Fehr, S., O’Neill, A.: On Notions of Security for Deterministic Encryption, and Efficient Constructions without Random Oracles. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

    Google Scholar 

  6. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

    Google Scholar 

  7. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM Journal of Computing 32(3), 586–615 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. Journal of the ACM 51(4) (2004)

    Google Scholar 

  9. Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

    Google Scholar 

  10. Choi, S.-G., Dachman-Soled, D., Malkin, T., Wee, H.: Black-box construction of a non-malleable encryption scheme from any semantically secure one. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 427–444. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Cramer, R., Shoup, V.: A Practical Public-Key Cryptosystem Provably Secure Against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 13. Springer, Heidelberg (1998)

    Google Scholar 

  12. Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, p. 45. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: STOC 1991, pp. 542–552. ACM Press, New York (1991)

    Chapter  Google Scholar 

  14. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. on Information Theory 29(2), 198–207 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fischlin, M.: Completely Non-malleable Schemes. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 779–790. Springer, Heidelberg (2005)

    Google Scholar 

  16. Freeman, D., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More Constructions of Lossy and Correlation-Secure Trapdoor Functions. In: PKC 2010. LNCS. Springer, Heidelberg (2010)

    Google Scholar 

  17. Goldwasser, S., Micali, S.: Probabilistic Encryption. J. Comput. Syst. Sci. 28(2) (1984)

    Google Scholar 

  18. Herzog, J., Liskov, M., Micali, S.: Plaintext Awareness via Key Registration. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 548–564. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 223. Springer, Heidelberg (1999)

    Google Scholar 

  21. Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a Non-malleable Encryption Scheme from Any Semantically Secure One. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC 2008. ACM Press, New York (2008)

    Google Scholar 

  23. Rackoff, C., Simon, D.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)

    Google Scholar 

  24. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: STOC 1990. ACM Press, New York (1990)

    Google Scholar 

  25. Sahai, A.: Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-Ciphertext Security. In: FOCS 1999 (1999)

    Google Scholar 

  26. Ventre, C., Visconti, I.: Completely non-malleable encryption revisited. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 65–84. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Libert, B., Yung, M. (2010). Efficient Completely Non-malleable Public Key Encryption . In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14165-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14165-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14164-5

  • Online ISBN: 978-3-642-14165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics