Skip to main content

Max-min Online Allocations with a Reordering Buffer

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6198))

Included in the following conference series:

  • 1524 Accesses

Abstract

We consider online scheduling so as to maximize the minimum load, using a reordering buffer which can store some of the jobs before they are assigned irrevocably to machines. For m identical machines, we show an upper bound of H m − 1 + 1 for a buffer of size m − 1. A competitive ratio below H m is not possible with any finite buffer size, and it requires a buffer of size \(\tilde\Omega(m)\) to get a ratio of O(logm). For uniformly related machines, we show that a buffer of size m + 1 is sufficient to get an approximation ratio of m, which is best possible for any finite sized buffer. Finally, for the restricted assignment model, we show lower bounds identical to those of uniformly related machines, but using different constructions. In addition, we design an algorithm of approximation ratio O(m) which uses a finite sized buffer. We give tight bounds for two machines in all the three models.

These results sharply contrast to the (previously known) results which can be achieved without the usage of a reordering buffer, where it is not possible to get a ratio below an approximation ratio of m already for identical machines, and it is impossible to obtain an algorithm of finite approximation ratio in the other two models, even for m = 2. Our results strengthen the previous conclusion that a reordering buffer is a powerful tool and it allows a significant decrease in the competitive ratio of online algorithms for scheduling problems. Another interesting aspect of our results is that our algorithm for identical machines imitates the behavior of the greedy algorithm on (a specific set of) related machines, whereas our algorithm for related machines completely ignores the speeds until the end, and then only uses the relative order of the speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albers, S.: Better bounds for online scheduling. SIAM Journal on Computing 29(2), 459–473 (1999)

    Article  MathSciNet  Google Scholar 

  2. Asadpour, A., Saberi, A.: An approximation algorithm for max-min fair allocation of indivisible goods. In: Proc. 39th Symp. Theory of Computing (STOC), pp. 114–121 (2007)

    Google Scholar 

  3. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line load balancing with applications to machine scheduling and virtual circuit routing. Journal of the ACM 44(3), 486–504 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Azar, Y., Epstein, L.: On-line machine covering. In: Burkard, R.E., Woeginger, G.J. (eds.) ESA 1997. LNCS, vol. 1284, pp. 23–36. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  5. Azar, Y., Naor, J., Rom, R.: The competitiveness of on-line assignments. Journal of Algorithms 18(2), 221–237 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bansal, N., Sviridenko, M.: The Santa Claus problem. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing (STOC), pp. 31–40 (2006)

    Google Scholar 

  7. Berman, P., Charikar, M., Karpinski, M.: On-line load balancing for related machines. Journal of Algorithms 35, 108–121 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cai, S.-Y.: Semi-online machine covering. Asia-Pacific J. of Oper. Res. 24(3), 373–382 (2007)

    Article  MATH  Google Scholar 

  9. Chassid, O., Epstein, L.: The hierarchical model for load balancing on two machines. Journal of Combinatorial Optimization 15(4), 305–314 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, B., van Vliet, A., Woeginger, G.J.: An optimal algorithm for preemptive on-line scheduling. Operations Research Letters 18, 127–131 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Csirik, J., Kellerer, H., Woeginger, G.: The exact LPT-bound for maximizing the minimum completion time. Operations Research Letters 11, 281–287 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Deuermeyer, B.L., Friesen, D.K., Langston, M.A.: Scheduling to maximize the minimum processor finish time in a multiprocessor system. SIAM Journal on Discrete Mathematics 3(2), 190–196 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dósa, G., Epstein, L.: Online scheduling with a buffer on related machines. Journal of Combinatorial Optimization. (to appear), doi:10.1007/s10878-008-9200-y

    Google Scholar 

  14. Dósa, G., Epstein, L.: Preemptive online scheduling with reordering. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 456–467. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Ebenlendr, T., Noga, J., Sgall, J., Woeginger, G.J.: A note on semi-online machine covering. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 110–118. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Englert, M., Özmen, D., Westermann, M.: The power of reordering for online minimum makespan scheduling. In: Proc. 48th Symp. Foundations of Computer Science (FOCS), pp. 603–612 (2008)

    Google Scholar 

  17. Epstein, L., Sgall, J.: Approximation schemes for scheduling on uniformly related and identical parallel machines. Algorithmica 39(1), 43–57 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Friesen, D.K., Deuermeyer, B.L.: Analysis of greedy solutions for a replacement part sequencing problem. Mathematics of Operations Reasearch 6(1), 74–87 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gormley, T., Reingold, N., Torng, E., Westbrook, J.: Generating adversaries for request-answer games. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 564–565 (2000)

    Google Scholar 

  20. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Sys. Tech. J. 45, 1563–1581 (1966)

    Google Scholar 

  21. Jiang, Y., Tan, Z., He, Y.: Preemptive machine covering on parallel machines. Journal of Combinatorial Optimization 10(4), 345–363 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kellerer, H., Kotov, V., Speranza, M.G., Tuza, Z.: Semi online algorithms for the partition problem. Operations Research Letters 21, 235–242 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tan, Z., Wu, Y.: Optimal semi-online algorithms for machine covering. Theoretical Computer Science 372(1), 69–80 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Woeginger, G.J.: A polynomial time approximation scheme for maximizing the minimum machine completion time. Operations Research Letters 20(4), 149–154 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhang, G.: A simple semi on-line algorithm for P2//C max with a buffer. Information Processing Letters 61, 145–148 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Epstein, L., Levin, A., van Stee, R. (2010). Max-min Online Allocations with a Reordering Buffer. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14165-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14165-2_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14164-5

  • Online ISBN: 978-3-642-14165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics