Skip to main content

Approximating the Partition Function of the Ferromagnetic Potts Model

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6198))

Included in the following conference series:

  • 1564 Accesses

Abstract

We provide evidence that it is computationally difficult to approximate the partition function of the ferromagnetic q-state Potts model when q > 2. Specifically we show that the partition function is hard for the complexity class #RHII1 under approximation-preserving reducibility. Thus, it is as hard to approximate the partition function as it is to find approximate solutions to a wide range of counting problems, including that of determining the number of independent sets in a bipartite graph. Our proof exploits the first order phase transition of the “random cluster” model, which is a probability distribution on graphs that is closely related to the q-state Potts model. A full version of this paper, with proofs included, is available at http://arxiv.org/abs/1002.0986 .

This work was partially supported by the EPSRC grant The Complexity of Counting in Constraint Satisfaction Problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Frieze, A., Welsh, D.: Polynomial time randomized approximation schemes for Tutte-Gröthendieck invariants: the dense case. Random Structures Algorithms 6(4), 459–478 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bollobás, B., Grimmett, G., Janson, S.: The random-cluster model on the complete graph. Probab. Theory Related Fields 104(3), 283–317 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bordewich, M.: On the approximation complexity hierarchy (in preparation, 2010)

    Google Scholar 

  4. Chebolu, P., Goldberg, L.A., Martin, R.: Approximately counting stable matchings (in preparation, 2010)

    Google Scholar 

  5. Dalmau, V.: Linear datalog and bounded path duality of relational structures. Logical Methods in Computer Science 1(1) (2005)

    Google Scholar 

  6. Dyer, M.E., Goldberg, L.A., Greenhill, C.S., Jerrum, M.: The relative complexity of approximate counting problems. Algorithmica 38(3), 471–500 (2003)

    Article  MathSciNet  Google Scholar 

  7. Ge, Q., Stefankovic, D.: A graph polynomial for independent sets of bipartite graphs. CoRR, abs/0911.4732 (2009)

    Google Scholar 

  8. Goldberg, L.A., Jerrum, M.: Counterexample to rapid mixing of the GS Process. Technical note (2010)

    Google Scholar 

  9. Goldberg, L.A., Jerrum, M.: The complexity of ferromagnetic Ising with local fields. Combinatorics, Probability & Computing 16(1), 43–61 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Goldberg, L.A., Jerrum, M.: Inapproximability of the Tutte polynomial. Inform. and Comput. 206(7), 908–929 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Goldberg, L.A., Jerrum, M.: Inapproximability of the Tutte polynomial of a planar graph. CoRR, abs/0907.1724 (2009)

    Google Scholar 

  12. Grimmett, G.: Potts models and random-cluster processes with many-body interactions. J. Statist. Phys. 75(1-2), 67–121 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Holley, R.: Remarks on the FKG inequalities. Comm. Math. Phys. 36, 227–231 (1974)

    Article  MathSciNet  Google Scholar 

  14. Jaeger, F., Vertigan, D.L., Welsh, D.J.A.: On the computational complexity of the Jones and Tutte polynomials. Math. Proc. Cambridge Philos. Soc. 108(1), 35–53 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jerrum, M., Sinclair, A.: Polynomial-time approximation algorithms for the Ising model. SIAM J. Comput. 22(5), 1087–1116 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial structures from a uniform distribution. Theoret. Comput. Sci. 43(2-3), 169–188 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kelk, S.: On the relative complexity of approximately counting H-colourings. PhD thesis, University of Warwick, Coventry, UK (July 2004)

    Google Scholar 

  18. Luczak, M., Łuczak, T.: The phase transition in the cluster-scaled model of a random graph. Random Structures Algorithms 28(2), 215–246 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Potts, R.B.: Some generalized order-disorder transformations. Proc. Cambridge Philos. Soc. 48, 106–109 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sokal, A.: The multivariate Tutte polynomial. In: Surveys in Combinatorics. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  21. Vertigan, D.L., Welsh, D.J.A.: The computational complexity of the Tutte plane: the bipartite case. Combin. Probab. Comput. 1(2), 181–187 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Vertigan, D.: The computational complexity of Tutte invariants for planar graphs. SIAM J. Comput. 35(3), 690–712 (2005) (electronic)

    Article  MathSciNet  Google Scholar 

  23. Welsh, D.J.A.: Complexity: knots, colourings and counting. London Mathematical Society Lecture Note Series, vol. 186. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  24. Zuckerman, D.: On unapproximable versions of NP-Complete problems. SIAM Journal on Computing 25(6), 1293–1304 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldberg, L.A., Jerrum, M. (2010). Approximating the Partition Function of the Ferromagnetic Potts Model. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14165-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14165-2_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14164-5

  • Online ISBN: 978-3-642-14165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics