Skip to main content

Composition Theorems in Communication Complexity

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6198))

Included in the following conference series:

  • 1555 Accesses

Abstract

A well-studied class of functions in communication complexity are composed functions of the form (f ∘ g n) (x,y) = f(g(x 1, y 1), ..., g(x n,y n)). This is a rich family of functions which encompasses many of the important examples in the literature. It is thus of great interest to understand what properties of f and g affect the communication complexity of (f ∘ g n), and in what way.

Recently, Sherstov [She09] and independently Shi-Zhu [SZ09b] developed conditions on the inner function g which imply that the quantum communication complexity of f ∘ g n is at least the approximate polynomial degree of f. We generalize both of these frameworks. We show that the pattern matrix framework of Sherstov works whenever the inner function g is strongly balanced—we say that g: X ×Y →{ − 1, + 1} is strongly balanced if all rows and columns in the matrix M g  = [g(x,y)] x,y sum to zero. This result strictly generalizes the pattern matrix framework of Sherstov [She09], which has been a very useful idea in a variety of settings [She08b, RS08, Cha07, LS09a, CA08, BHN09].

Shi-Zhu require that the inner function g has small spectral discrepancy, a somewhat awkward condition to verify. We relax this to the usual notion of discrepancy.

We also enhance the framework of composed functions studied so far by considering functions F(x,y) = f(g(x,y)), where the range of g is a group G. When G is Abelian, the analogue of the strongly balanced condition becomes a simple group invariance property of g. We are able to formulate a general lower bound on F whenever g satisfies this property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. Journal of the ACM 48(4), 778–797 (2001); Earlier version in FOCS 1998

    Article  MATH  MathSciNet  Google Scholar 

  2. Buhrman, H., Cleve, R., Wigderson, A.: Quantum vs. classical communication and computation. In: Proceedings of the 30th ACM Symposium on the Theory of Computing, pp. 63–68 (1998)

    Google Scholar 

  3. Beame, P., Huynh-Ngoc, D.: Multiparty communication complexity and threshold circuit size of AC0. In: Proceedings of the 50th IEEE Symposium on Foundations of Computer Science, pp. 53–62 (2009)

    Google Scholar 

  4. Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols, pseudorandom generators for Logspace, and time-space trade-offs. Journal of Computer and System Sciences 45, 204–232 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: A survey. Theoretical Computer Science 288, 21–43 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chattopadhyay, A., Ada, A.: Multiparty communication complexity of disjointness. Technical Report TR-08-002, ECCC (2008)

    Google Scholar 

  7. Chattopadhyay, A.: Discrepancy and the power of bottom fan-in depth-three circuits. In: Proceedings of the 48th IEEE Symposium on Foundations of Computer Science, pp. 449–458 (2007)

    Google Scholar 

  8. Chattopadhyay, A.: Circuits, Communication, and Polynomials, PhD thesis, McGill University (2008)

    Google Scholar 

  9. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  10. Linial, N., Mendelson, S., Schechtman, G., Shraibman, A.: Complexity measures of sign matrices. Combinatorica 27(4), 439–463 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lovász, L., Saks, M.: Möbius functions and communication complexity. In: Proceedings of the 29th IEEE Symposium on Foundations of Computer Science, pp. 81–90 (1988)

    Google Scholar 

  12. Lee, T., Shraibman, A.: Disjointness is hard in the multiparty number-on-the-forehead model. Computational Complexity 18(2), 309–336 (2009)

    Article  MathSciNet  Google Scholar 

  13. Lee, T., Shraibman, A.: Lower bounds in communication complexity. Foundations and Trends in Theoretical Computer Science 3 (2009)

    Google Scholar 

  14. Linial, N., Shraibman, A.: Learning complexity versus communication complexity. Combinatorics, Probability, and Computing 18, 227–245 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Linial, N., Shraibman, A.: Lower bounds in communication complexity based on factorization norms. Random Structures and Algorithms 34, 368–394 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lee, T., Shraibman, A., Špalek, R.: A direct product theorem for discrepancy. In: Proceedings of the 23rd IEEE Conference on Computational Complexity, pp. 71–80. IEEE, Los Alamitos (2008)

    Chapter  Google Scholar 

  17. Nisan, N.: The communication complexity of threshold gates. In: Proceedings of Combinatorics, Paul Erdos is Eighty, pp. 301–315 (1994)

    Google Scholar 

  18. Nisan, N., Szegedy, M.: On the degree of Boolean functions as real polynomials. Computational Complexity 4, 301–313 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Raz, R.: Exponential separation of quantum and classical communication complexity. In: Proceedings of the 31st ACM Symposium on the Theory of Computing, pp. 358–367 (1999)

    Google Scholar 

  20. Razborov, A.: Quantum communication complexity of symmetric predicates. Izvestiya: Mathematics 67(1), 145–159 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Razborov, A., Sherstov, A.: The sign rank of AC0. In: Proceedings of the 49th IEEE Symposium on Foundations of Computer Science, pp. 57–66 (2008)

    Google Scholar 

  22. Shaltiel, R.: Towards proving strong direct product theorems. Computational Complexity 12(1-2), 1–22 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sherstov, A.: Separating AC0 from depth-2 majority circuits. In: Proceedings of the 39th ACM Symposium on the Theory of Computing, pp. 294–301. ACM, New York (2007)

    Google Scholar 

  24. Sherstov, A.: Communication lower bounds using dual polynomials. Bulletin of the EATCS 95, 59–93 (2008)

    MATH  MathSciNet  Google Scholar 

  25. Sherstov, A.: The unbounded-error communication complexity of symmetric functions. In: Proceedings of the 49th IEEE Symposium on Foundations of Computer Science (2008)

    Google Scholar 

  26. Sherstov, A.: The pattern matrix method. SIAM Journal on Computing (2009)

    Google Scholar 

  27. Sherstov, A.: On quantum-classical equivalence for composed communication problems. Quantum Information and Computation 10(5-6), 435–455 (2010)

    Google Scholar 

  28. Shi, Y., Zhang, Z.: Communication complexities of XOR functions. Quantum information and computation 9(3-4), 255–263 (2009)

    MATH  MathSciNet  Google Scholar 

  29. Shi, Y., Zhu, Y.: Quantum communication complexity of block-composed functions. Quantum information and computation 9(5,6), 444–460 (2009)

    MATH  MathSciNet  Google Scholar 

  30. Yao, A.: Some complexity questions related to distributive computing. In: Proceedings of the 11th ACM Symposium on the Theory of Computing, pp. 209–213 (1979)

    Google Scholar 

  31. Zhang, S.: On the tightness of the Buhrman-Cleve-Wigderson simulation. In: Proceedings of the 20th International Symposium on Algorithms and Computation, pp. 434–440 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, T., Zhang, S. (2010). Composition Theorems in Communication Complexity. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14165-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14165-2_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14164-5

  • Online ISBN: 978-3-642-14165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics