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Abstract

An instance of the tollbooth problem consists of an undirected network and a collection of single-
minded customers, each of which is interested in purchasinga fixed path subject to an individual
budget constraint. The objective is to assign a per-unit price to each edge in a way that maximizes
the collective revenue obtained from all customers. The revenue generated by any customer is equal
to the overall price of the edges in her desired path, when this cost falls within her budget; otherwise,
that customer will not purchase any edge.

Our main result is a deterministic algorithm for the tollbooth problem on trees whose approxi-
mation ratio isO(logm/ log logm), wherem denotes the number of edges in the underlying graph.
This finding improves on the currently best performance guarantees for trees, due to Elbassioni et
al. (SAGT ’09), as well as for paths (commonly known as the highway problem), due to Balcan and
Blum (EC ’06). An additional interesting consequence is a computational separation between toll-
booth pricing on trees and the original prototype problem ofsingle-minded unlimited supply pricing,
under a plausible hardness hypothesis due to Demaine et al. (SODA ’06).
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1 Introduction

An extensively-studied question in economics and operations management is that of pricing an assortment
of products in a given market, trying to maximize revenue subject to a multitude of constraints. Somewhat
informally, the inherent difficulty in such settings boils down to the obvious tension between two extremes:
low prices attract more customers, while high prices generate greater revenues per purchase. Recently,
the spotlights have been turned on computational challenges in pricing. What seems to be the driving
force behind this line of research is an immense growth in therange of sources for acquiring costumer
preferences data, which are now available as a result of the widespread use of the Internet.

The tollbooth problem. One particular computational task that has received much recent attention is the
tollbooth problem, which captures optimization-related aspects of pricing connection links in networks,
e.g., setting prices for road use in a system of toll highways. Formally, an instance of this problem consists
of an undirected graphG = (V,E) with m edges, which can be broadly interpreted as products with un-
limited supply. An additional ingredient of the input is a collection C of n single-minded customers, each
of which is interested in purchasing a fixed path subject to anindividual budget constraint. Technically
speaking, the demand attributes of customeri are represented by a pair (Pi , bi), wherePi ⊆ G is the path
she wishes to buy, andbi stands for her budget, namely, the maximum price she is willing to pay for that
path. Any customer will buy a single unit of each edge in the desired path when its total cost falls within
her budget; otherwise, she leaves without buying anything.With this setting in mind, the goal is to assign
a per-unit price to each edge in a way that maximizes the overall revenue. More precisely, the objective is
to compute a pricing schemep : E→ R+ that maximizes the total revenue over all customers,

∑n
i=1 Rp(i).

Here,Rp(i) denotes the revenue obtained from customeri, which evaluates to
∑

e∈Pi
p(e) when this cost

does not exceedbi , or to 0, otherwise.

Previous work. Guruswami et al. [23] seem to have been the first to study the tollbooth problem. Their
main results in this context were to show that tollbooth pricing is APX-hard even when the underlying
graph is a tree, and to devise exact dynamic-programming algorithms for the single-source variant on trees
and for several other special cases. Additional hardness results were obtained by Briest and Krysta [7],
who proved that even the seemingly-manageable setting of a simple path, commonly known as the high-
way problem, is in fact weakly NP-hard. Elbassioni, Raman, Ray, and Sitters [13] extended this result by
establishing strong NP-hardness. On the positive side, however, Balcan and Blum [3] devised anO(logm)
approximation for the highway problem; this finding is incomparable with the quasi-PTAS developed by
Elbassioni, Sitters, and Zhang [14] later on. Finally, and very recently, Elbassioni et al. [13] proposed an
O(logm) approximation for arbitrary trees. To conclude, approximating the tollbooth problem on trees,
or even on simple paths, beyond the logarithmic threshold has remained an open research question.

1.1 Our results

The main result of this paper is a deterministic algorithm for the tollbooth problem on trees whose approx-
imation ratio isO(logm/ log logm), improving on the currently best performance guarantees for trees, as
well as for paths, due to Elbassioni et al. [13], and to Balcanand Blum [3], respectively. Even though
the quantitative magnitude of improvement is not that dramatic, our findings have additional interesting
contributions:

Conceptual. We identify a computational separation between tollbooth pricing on trees and the original
prototype problem of single-minded unlimited supply pricing (see Section 1.2). The latter cannot be
approximated within a factor smaller thanΩ(logn), under a plausible hardness hypothesis regarding the
balanced bipartite independent set problem [12], whereas in the former the resulting factor is better by
Ω(log logn) or more. Regarding the relation betweenm andn, we remark that an arbitrary instance of
tollbooth pricing on trees can be reduced to one withm= O(n). The general idea is that, when the number
of edges is significantly larger than the number of customers, paths can be iteratively contracted (see, for
instance, [13, Sec. 2.2]).
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Technical. We believe that some of the algorithmic tools and analysis methods, illustrated in Sections 2
and 3, are of independent interest, and may be applicable in other settings as well. In particular, we have
already derived new approximability bounds for graph orientation problems [18] by synthesizing ideas
such as balanced decompositions, segment guessing, and randomization.

1.2 Related work

We proceed with a brief discussion on the single-minded unlimited supply pricing problem, from which
the computational setting considered in this paper seems tohave emerged. The input to the former prob-
lem consists ofmdifferent products, with unlimited supply, and a collection ofn single-minded customers,
each of which is interested in purchasing a particular subset (or bundle) of products subject to an individ-
ual budget constraint. The goal is to assign a per-unit priceto each product in a way that maximizes the
overall revenue, where again, a customer will buy a single unit of each product in her bundle only when
its total cost fits within her budget. This problem was originally introduced by Guruswami et al. [23],
who demonstrated that the single-price policy, where all products are given identical prices, guarantees
an approximation ratio ofO(logn + logm) with respect to the optimal revenue. Later on, Balcan, Blum
and Mansour [4] extended this finding to the setting of customers with general valuation functions. From
a hardness point of view, Demaine, Feige, Hajiaghayi, and Salavatipour [12] established several inap-
proximability results under various complexity assumptions. In particular, they proved a lower bound of
Ω(logn), under a plausible hardness hypothesis regarding the balanced bipartite independent set problem.

A concurrent line of research focused on computing approximate pricing schemes in terms of other
problem parameters. For instance, when the number of different products is fixed, Hartline and Koltun [24]
showed that an FPTAS can be devised. Briest and Krysta [7] suggested anO(log B+ logℓ) approximation,
whereB is the maximum number of requests per product andℓ is the maximum size of any bundle, as well
as a different algorithm, whose performance guarantee isO(ℓ2). Balcan and Blum [3] improved on this
result, to obtain a ratio ofO(ℓ), and demonstrated that the vertex pricing problem (whereℓ = 2) can be
approximated within a factor of 4. Vertex pricing was further studied in [27, 26]. Recently, Cheung and
Swamy [11] design an LP-based algorithm for a more general model of revenue maximization in a limited
supply scenario that implies anO(log B) approximation for single-minded unlimited supply pricing.

We note that revenue maximization, in various colors and flavors, has received a great deal of recent
attention in the computer science and operations research communities. Therefore, it is beyond the scope
of this writing to do justice and present an exhaustive survey of previous work. We refer the reader to
directly related papers [19, 16, 1, 5, 8, 9, 21, 6, 10, 22] and to the references therein for a more compre-
hensive review of the literature.

2 The Classification Process

Prior to describing the specifics of our approach in detail, which will inevitably involve delving into tech-
nicalities, it would be instructive to concentrate on the bigger picture. For this purpose, we begin by
pointing out that the performance guarantee ofO(logm/ log logm) is obtained by employing the classify-
and-select paradigm. More specifically, we exploit variousstructural properties to partition the collection
of customers intoO(logm/ log logm) pairwise-disjoint classes. For each such class, given theadditional
structure imposed, we separately compute a pricing scheme whose overall revenue comes within acon-
stant factorof the optimal revenue attainable from this class. In particular, each class is treated in a
completely independent fashion, as if there are no other classes under consideration. Consequently, since
the objective function is subadditive, the above-mentioned approximation ratio follows by picking, out of
the set of all pricing schemes computed, the one that collects maximal revenue. We proceed by describing
the customer classification process; this exposition will allow us to focus attention on the more involved
single-class problem later on.

2



2.1 Classifying customers via balanced decompositions

In the following, we give a formal account of the process by which customers are partitioned into classes.
To this end, we begin by introducing the notion of an almost-balanced decomposition, which can be
viewed as a generalization of the well-known centroid decomposition [17]. It is worth noting that struc-
tural properties in this spirit have been explored and exploited in various settings (see, e.g., [15, 20, 25]).

Definition 2.1. Let T = (V,E) be a tree. Analmost balanced k-decompositionof T is a partition ofT into
k edge-disjoint subtreesT1, . . . ,Tk such that each subtree contains between|E|/(3k) and 3|E|/k edges.

For ease of presentation, we defer the proof of the followinglemma to Appendix A.1.

Lemma 2.2. Let T = (V,E) be a tree with|E| ≥ k. An almost balanced k-decomposition of T exists and
can be found in polynomial time. Moreover, the number of vertices that are shared by at least two subtrees
is less than k.

The classification process corresponds to a recursive decomposition of the input treeT; to better
understand the upcoming discussion, we advise the reader toconsult Figure 1. LetT1 = {T1, . . . ,Tk}

be an almost balancedk-decomposition ofT into k edge-disjoint subtrees. The first class of customers,
C1, consists of all customers separated byT1, that is, customersi for which the endpoints of the desired
pathPi (henceforth,si and ti) reside in different subtrees of the decompositionT1. Now, to classify the
remaining set of customers,C \C1, we recursively apply the previously-described procedurewith respect
to the collection of subtrees inT1. Specifically, in the second level of the recursion, an almost balanced
k-decomposition is computed in each of the subtreesT1, . . . ,Tk, to obtain a setT2, comprising ofk2

subtrees. The second class of customers,C2, consists of all yet-unclassified customers separated byT2.
In other words, the endpoints of each pathPi , for which i ∈ C2, reside in different subtrees ofT2, but in
the same subtree ofT1. The remaining classesC3,C4, . . . are defined similarly. It is important to note that
the recursive process ends as soon as we arrive at a subtree with strictly less thank edges. In this case, we
make use of the trivial decomposition, where the given subtree is broken into individual edges.

s3s1

t2

t3

s5

s2

t4 s4

t5

t1

Figure 1: A schematic example for the collection of customers separated by an almost balanced decom-
position, where each triangle marks a single subtree. Here,customers 1, 2, and 3 are separated, whereas 4
and 5 are not.

It is quite obvious that, up until this point in time,k was treated as a parameter whose value has
not been determined yet. For our purposes, we employ the above-mentioned classification process with
k = ⌈log1/2 m⌉. With this value ofk at hand1, one can easily verify that the overall number of levels in

1A careful inspection later on shows that this particular selection is rather arbitrary, and any fixed exponent smaller than 1
will do the trick.
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the recursion, or equivalently, the number of customer classes isO(logk m) = O(logm/ log logm). This
claim is immediately implied by observing that the maximum size of a subtree in levelℓ of the recursion
is at most (3/k)ℓ · |E|. As a side note, we remark that the balanced decomposition property, ensuring that
all subtrees are of size roughly|E|/k, does not play any role from this point on, as its sole purposewas to
restrict the number of classes toO(logm/ log logm).

2.2 Why handling a single decomposition is sufficient

We remind the reader that a class of customers, sayCℓ, generally consists of several subsets of customers,
each created when different subtrees inTℓ−1 are partitioned by the decompositionTℓ. More specifically,
assuming that the subtrees inTℓ−1 are T1,T2, . . ., the classCℓ can be written as the disjoint union of
C1
ℓ
,C2
ℓ
, . . ., whereC j

ℓ
is the set of customers that are first separated whenT j is partitioned. Notice that the

desired path of any customer separated by some subtree decomposition must be contained in that subtree,
since otherwise, this customer would have been separated inprevious recursion steps. This observation
implies that it is sufficient to compute an approximate pricing scheme for a single subtree decomposition
and its induced set of separated customers. Given a polynomial-time algorithm that computes such pricing
schemes, one cansequentiallyapply it to each of the subtree decompositions in the same recursion level.
The resulting pricing schemes (in edge-disjoint subtrees)can then be “glued” to form a single scheme,
defined for the entire edge set, collecting at least as much revenue as the sum of all individual subtree
revenues.

3 The Single Decomposition Algorithm

In what follows, we focus our attention on a single decomposition, and devise a randomized algorithm
that computes a pricing scheme whose expected revenue is within a constant factor of the optimal revenue
attainable for this decomposition. Later on, we will argue that this algorithm can be easily derandomized.
Formally, an instance of the problem in question consists ofa treeT = (V,E), and a partitionT =
{T1, . . . ,Tk} of this tree intok edge-disjoint subtrees, wherek ≤ ⌈log1/2 m⌉, such that the number of
vertices shared by at least two subtrees is less thank. In addition, we are given a collectionC of n
customers, satisfying the following properties:

1. Each customeri wishes to purchase a pathPi so long as the overall price of this path does not exceed
the budgetbi .

2. Each customer pathPi is separated byT , meaning that the endpoints ofPi reside in different
subtrees of the decompositionT .

3.1 Notation and Terminology

For ease of presentation, it would be convenient to introduce some notation and terminology before laying
down the nuts and bolts of our algorithm. To better understand the suggested notation, we refer the reader
to a concrete example in Figure 2.

• Let VB ⊆ V be the set ofborder verticesof T , that is, the set of vertices that are shared by at
least two subtrees inT . In addition, letS ⊆ T be theskeletonof T , namely, the minimal subtree
spanned by all border vertices. Note that this subtree consists of the union of paths connecting any
two vertices inVB.

• Let p∗ : E→ R+ be an optimal pricing scheme, with an overall revenue of OPT.

• Now, recall that the endpoints of each customer pathPi reside in different subtrees of the decom-
positionT , meaning thatPi must traverse at least one border vertex. Therefore, we can divide each
customer path, with endpointssi andti , into three (possibly empty) parts:

1. A subpath betweensi and its closest skeleton vertexvsi .
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2. A subpath betweenti and its closest skeleton vertexvti .

3. A subpath betweenvsi andvti , along the skeleton.

Based on this definition, letRS
p∗(i), RT

p∗(i), andRM
p∗(i) denote the revenues obtained in the pricing

schemep∗ from the subpaths of customeri, respectively2. Clearly,Rp∗(i) = RS
p∗(i) +RT

p∗(i) +RM
p∗(i).

vti
vsi

si

ti

(b)(a)

T5

T6

T4T3T2T1

Figure 2: (a) An almost balanced 6-decomposition of a tree with 18 edges. Note that the black vertices
are border vertices, and the heavy edges make up the skeletonS. (b) Dividing the customer pathPi into
three parts.

3.2 The algorithm

Having all necessary definitions in place, we are now ready topresent the specifics of our pricing algo-
rithm, and to analyze its performance. In the remainder of this section, we consider two complementing
scenarios, depending on the contribution of different path parts to the revenue generated by the optimal
pricing schemep∗. Somewhat informally, the first scenario captures a situation where a significant por-
tion of OPT is gained from customer subpaths traversing non-skeleton edges, or in other words, when
∑n

i=1(RS
p∗(i) + RT

p∗(i)) = Ω(1) ·OPT. The second scenario corresponds to a situation where a large portion

is delivered by subpaths along the skeleton, that is, when
∑n

i=1 RM
p∗(i) = Ω(1) ·OPT. For each of these sce-

narios, we compute a pricing scheme whose expected revenue is within a constant factor of optimal. As a
result, we obtain a constant approximation ratio by computing both pricing schemes and picking the one
that achieves the maximum revenue. For sake of simplicity, we begin by considering the easy-to-handle
first scenario, noting that the second, more challenging scenario, will be discussed in the sequel.

Scenario I:
∑n

i=1
(RS

p∗
(i) + RT

p∗
(i)) ≥ OPT/2

In the present setting, at least half of the optimal revenue is collected from customer subpaths consisting of
non-skeleton edges, meaning that the collective contribution of the subpathsPi \S, over all customersi, is
at least OPT/2. The algorithmic tool that allows us to handle this scenario is a polynomial-time procedure,
due to Guruswami et al. [23], for solving the single-source tollbooth problem on trees to optimality. Here,
the underlying assumption is that all customer paths share acommon endpoint, that is,s1 = · · · = sn. With
this tool at hand, the algorithm proceeds as follows:

1. Each of the decomposition subtrees,T1, . . . ,Tk, is randomly and independently marked as being
active, with probability 1/2; otherwise, that tree isinactive.

2. We decide in advance that all skeleton edges, as well as alledges within inactive trees, could be
purchased free of charge, i.e., their price is set to zero.

2These superscripts stand for:S – subpath adjacent tosi ; T – subpath adjacent toti ; andM – middle subpath.
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3. Let C(T j) denote the subset of customers with an endpoint inT j . For each active subtreeT j , we
contract all skeleton edges in that subtree into a single root3, designated byr, and apply the single-
source algorithm, when the underlying set of customers are those inC(T j). Each such customeri is
now interested in purchasing the path connecting its endpoint in T j to the rootr, still with a budget
of bi . Note that each customer has at most one endpoint inT j , since otherwise,T j contains her
desired path, in contradiction to the underlying setting.

Lemma 3.1. The computed pricing scheme guarantees an expected revenueof at leastOPT/8.

Proof. We begin by observing that the expression
∑n

i=1(RS
p∗(i) + RT

p∗(i)), which stands for the overall
revenue in the optimal pricing scheme obtained from non-skeleton edges (over all customers), can be
rewritten as the sum of revenues obtained from the subtreesT1, . . . ,Tk. That is, recollecting thatC(T j)
denotes the subset of customers with an endpoint inT j , we have

n
∑

i=1

(

RS
p∗(i) + RT

p∗(i)
)

=

k
∑

j=1

∑

i∈C(T j )

Rp∗((Pi \ S) ∩ T j) ,

whereRp∗((Pi \ S) ∩ T j) denotes the revenue obtained from the subpath ofPi within the subtreeT j ,
excluding skeleton edges.

Now, for each active subtreeT j , one can easily verify that the pricing schemep∗, restricted to the
edges ofT j (or, more precisely, to its skeleton-contracted version),constitutes a feasible solution to the
corresponding single-source problem, with an objective value of at least

∑

i∈C(T j ) Rp∗((Pi \ S)∩T j). Since
for this particular problem we compute an optimal pricing scheme, the revenue collected from customers
in C(T j), restricted to the subtreeT j , is at least that value. At this point in time, we observe that, for each
such customer, with probability 1/2 we will be able to stay within the budgetbi , and collect exactly the
same profit for the entire pathPi, with additional edges outside ofT j . To establish this claim, since the
price of all skeleton edges has been set to zero, it is sufficient to note that the subpath ofPi that does not
traverse edges either in the subtreeT j or the skeletonS, i.e.,Pi \ (T j ∪ S), is entirely contained within a
subtree different fromT j ; that subtree will be marked as inactive with probability 1/2, and its edge prices
will be set to zero. It follows that the expected revenue of the pricing scheme computed is at least

1
4

k
∑

j=1

∑

i∈C(T j )

Rp∗((Pi \ S) ∩ T j) =
1
4

n
∑

i=1

(

RS
p∗(i) + RT

p∗(i)
)

≥
OPT

8
.

Scenario II:
∑n

i=1
RM

p∗
(i) ≥ OPT/2

In this setting, at least half of the optimal revenue is collected from customer subpaths consisting of
skeleton edges, meaning that the collective contribution of the subpathsPi ∩ S, over all customersi, is at
least OPT/2. Our algorithm begins by first deciding that all non-skeleton edges could be purchased for
free, and sets their price to zero. As a result, we may assume that the endpoints of each customer path are
located on the skeleton, since otherwise, we can relocate them to their closest skeleton vertices, without
any consequences whatsoever. With this structural alteration in mind, the skeleton pricing is carried out in
two phases:segment guessing, where close estimates of the optimal prices along disjointsubpaths of the
skeleton are obtained, followed byrandomized assignment, where prices are associated with individual
skeleton edges.

Phase I: segment guessing.We remind the reader that the skeletonS is the minimal subtree ofT
spanned by all border verticesVB. We denote byVJ the set ofjunction vertices, defined as non-border
skeleton vertices with degree at least 3 (counting only skeleton edges). One can easily verify that|VJ| <

3The contraction is achieved by removing all skeleton edges,and unifying their endpoints into a representative vertex.
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|VB| < k. In addition, we call the vertex setVB∪VJ thecoreof the skeletonS. Based on these definitions,
we can partition the skeleton into a collectionΣ(S) of edge-disjoint paths, which are referred to asseg-
ments. Each such segment is a subpath ofS whose endpoints are core vertices, but its interior traverses
only non-core vertices. Obviously,|Σ(S)| = |VB| + |VJ| − 1 < 2k.

In what follows, we argue that one could obtain in polynomialtime a close estimate for the total price
p∗(σ) =

∑

e∈σ p∗(e) of each segmentσ ∈ Σ(S), simultaneouslyfor all segments. To this end, it is sufficient
to prove that there exists avery smallset of pricesΓ, and a corresponding pricing schemepΓ : E → R+,
such that the price given bypΓ to every segment falls withinΓ, namely,pΓ(σ) ∈ Γ for eachσ ∈ Σ(S), and
such thatpΓ(σ) approximatesp∗(σ) well. At the same time, we would like to make sure that the overall
revenue that the supporting pricing schemepΓ collects from customer subpaths consisting of skeleton
edges still forms a fixed portion of

∑n
i=1 RM

p∗(i). A construction of this nature is given in the next lemma,
whose proof appears in Appendix A.2.

Lemma 3.2. LetΓ = {2ℓ · bmax/(4nm) : 0 ≤ ℓ ≤ ⌊log(4nm2)⌋} ∪ {0}, where bmax = maxi bi . Then, there is
a pricing scheme pΓ : E→ R+ that satisfies the following properties:

1. pΓ(σ) ∈ Γ for eachσ ∈ Σ(S).

2.
∑n

i=1 RM
pΓ(i) ≥

∑n
i=1 RM

p∗(i)/4.

By Lemma 3.2, we conclude that to obtain a close estimate for the total pricep∗(σ) of each segment
σ ∈ Σ(S), simultaneously for all segments, the total number of price assignments to be examined is of
polynomial size, since

|Γ||Σ(S)|
=
(

O(log(nm))
)O(k)

=
(

O(log(nm))
)O(log1/2 m)

= o(nm) .

Consequently, we may assume without loss of generality thatthe set of segment prices{pΓ(σ) : σ ∈ Σ(S)},
given in Lemma 3.2, is known in advance. This assumption can be easily enforced by enumerating over all
o(nm) possible assignments. On the other hand, it is worth notingthat we do not assume any knowledge
of the edge-specific pricingpΓ : E→ R+.

Phase II: randomized assignment. The goal of this phase is to complete the pricing scheme by assign-
ing carefully-picked random prices to individual skeletonedges, based on the estimated segment prices
{pΓ(σ) : σ ∈ Σ(S)}. The crux lies in making sure that the edge-specific pricesalwaysrespect the outcome
of the segment guessing phase, as stated in the next invariant.

Invariant 3.3. With probability1, the total price of each segmentσ ∈ Σ(S) is exactly pΓ(σ).

Our assignment procedure consists of independent steps, where segments are processed one after the
other. In each step, we consider a skeleton segmentσ = 〈v1, . . . , vℓ〉, and assign prices to its edges
(v1, v2), . . . , (vℓ−1, vℓ) in a way that satisfies Invariant 3.3. Specifically, as illustrated in Figure 3(a), we
pick one of the following four price assignments uniformly at random:

1. Assign a price ofpΓ(σ) to the edge (v1, v2), and zero prices to the remaining edges.

2. Assign a price ofpΓ(σ) to the edge (vℓ−1, vℓ), and zero prices to the remaining edges.

3. Assign prices based on av1-rooted single-source problem (see description below).

4. Assign prices based on avℓ-rooted single-source problem, analogous to item 3.

To complete the description of our algorithm, it remains to explain how the single-source instances in
items 3 and 4 are created and solved; for brevity of presentation, we focus on thev1-rooted case, noting
that the opposite case is identical, up to changing the rolesof v1 andvℓ. Once again, we will employ
the dynamic-programming algorithm of Guruswami et al. [23]for solving the single-source tollbooth
problem on trees, a valuable tool that was introduced in Scenario I. In particular, thev1-rooted instance is
comprised of the following components:

7



• The underlying graph is the segmentσ.

• The set of customers are those with an endpoint in{v2, . . . , vℓ−1}, whose desired path exits the
segmentσ throughv1.

• For each customeri under consideration, we set up a new endpoint atv1 instead of the one outside
σ, and change her budget to min{pΓ(σ), bi −

∑

σ̄:σ̄⊆Pi
pΓ(σ̄)}. Note that the latter term is exactly the

budget remaining to purchasePi, assuming that a total price ofpΓ(σ̄) has already been paid for each
segment ¯σ that is fully-contained inPi .

Needless to say, the single-source algorithm does not set a price for the edge (vℓ−1, vℓ), as it is not contained
in any desired path of thev1-rooted instance constructed. Therefore, to ensure that Invariant 3.3 holds,
we set the price of (vℓ−1, vℓ) to be the difference between the total segment pricepΓ(σ) and the total
newly-computed price of (v1, v2), . . . , (vℓ−2, vℓ−1). Here, it is important to point out that this difference is
indeed non-negative, since the dynamic-programming algorithm guarantees that the price of each subpath
〈v1, . . . , v j〉 is equal to the budget of some customer whose desired path is contained in〈v1, . . . , v j〉 (see
[23, Thm. 5.3]); on the other hand, the budget of every customer cannot exceedpΓ(σ), by definition.

(a)

assignment 4:

assignment 3:

assignment 2:

(b)

assignment 1:

pΓ(σ)0 0 0

pΓ(σ) 0 0 0

vℓvℓ−1vℓ−2v3v2v1

vℓvℓ−1vℓ−2v3

vℓvℓ−1vℓ−2v3v2v1

customers leaving through v1

v2

v1 v2 v3 vℓ−2 vℓ−1 vℓ

customers leaving through vℓ

v1

ūti

ti

uti

si

usi

ūsi

Figure 3: (a) A schematic description of the four random assignments for the segmentσ. Here, core
vertices are marked in black. (b) The new customer path partition.

Analysis. The remainder of this section is devoted to proving that the expected revenue of the pricing
scheme computed in the randomized assignment phase is within a constant factor of optimal, as formally
stated in the following lemma.

Lemma 3.4. The pricing scheme constructed in the randomized assignment phase guarantees an expected
revenue of at leastOPT/256.

Recall that we have previously assumed the endpoints of eachcustomer pathPi to be located on the
skeleton. Moreover, since these endpoints reside in different subtrees of the decompositionT , the path
Pi must traverse at least one border vertex. For this reason, asshown in Figure 3(b), we can divide each
customer path, with endpointssi andti , into three (possibly empty) parts:

1. A subpath, along a partial segment, betweensi and its closest core vertexusi .

2. A subpath, along a partial segment, betweenti and its closest core vertexuti .

3. A subpath betweenusi anduti , along a sequence of complete segments.

8



With these definitions in mind, letRS̃
pΓ(i), RT̃

pΓ(i), andRM̃
pΓ(i) denote the revenues obtained in the esti-

mated pricing schemepΓ from the subpaths of customeri, respectively. We remark thatpΓ is the pricing
scheme whose existence has been established in Lemma 3.2. Note that, by item 2 of this lemma, we can
bound the sum of the above-mentioned revenues, over all customers, in terms of OPT, since

n
∑

i=1

(

RS̃
pΓ(i) + RT̃

pΓ(i) + RM̃
pΓ(i)
)

=

n
∑

i=1

RM
pΓ(i) ≥

1
4

n
∑

i=1

RM
p∗(i) ≥

OPT
8
.

In what follows, we consider two cases, depending on the contribution of different path parts to the revenue
generated by the pricing schemepΓ. For each of these cases, we show that the randomized assignment
phase computes a pricing scheme whose expected revenue is within a constant factor of optimal.

Case I:
∑n

i=1
RM̃

pΓ
(i) ≥ OPT/16. In this setting, a significant fraction of the optimal revenue is collected

from customer subpaths consisting of complete segments, meaning that the collective contribution of the
pathsusi ! uti , over all customersi, is at least OPT/16. Notice that, by Invariant 3.3, our pricing scheme
always assigns a total price ofpΓ(σ) to each segmentσ ∈ Σ(S), implying that the overall price ofusi ! uti
is exactlyRM̃

pΓ(i). Therefore, the revenue from customeri is at leastRM̃
pΓ(i), unless the total price of the

remaining partial segmentssi ! usi and ti ! uti exceeds the residual budget,bi − RM̃
pΓ(i). We next

argue that, with probability at least 1/16, all edges on these partial segments will be given zero prices.
Consequently, the expected revenue from customeri is at leastRM̃

pΓ(i)/16, and by linearity of expectation,

the overall expected revenue is no less than
∑n

i=1 RM̃
pΓ(i)/16≥ OPT/256.

For the purpose of establishing the previously mentioned claim, we will show that, with probability at
least 1/4, each and every edge onsi ! usi is assigned a zero price. The claim then follows by observing
that an identical property with respect toti ! uti can be proven along the same lines, and also, that the
two events are independent. Now, notice that ifsi is a core vertex then the claim trivially holds, since
si ! usi is empty. Hence, let us consider the case wheresi is an internal vertex on the segment between
the core verticesusi andūsi . In this case, with probability 1/4, our algorithm assigns a price of zero to all
edges in this segment, except for the edge adjacent to ¯usi ; in particular, all edges onsi ! usi are assigned
zero prices.

Case II:
∑n

i=1
(RS̃

pΓ
(i) + RT̃

pΓ
(i)) ≥ OPT/16. Here, a constant fraction of the optimal revenue is collected

from customer subpaths consisting of partial segments, meaning that the collective contribution of the
pathssi ! usi and ti ! uti , over all customersi, is at least OPT/16. Consider some segmentσ =
〈v1, . . . , vℓ〉, and letC(σ) denote the collection of customers that have one of their path endpoints in
{v2, . . . , vℓ−1}. Clearly, if we useRσpΓ(i) to denote the revenue obtained in the pricing schemepΓ from
customeri along the segmentσ, then

∑

σ∈Σ(S)

∑

i∈C(σ)

RσpΓ(i) =
n
∑

i=1

(

RS̃
pΓ(i) + RT̃

pΓ(i)
)

.

Furthermore, letCL(σ) andCR(σ) be the sets of customers inC(σ) whose desired path exits the segment
σ throughv1 andvℓ, respectively. Obviously,C(σ) = CL(σ) ∪CR(σ).

Recall that, with probability 1/4, our algorithm computes an optimal pricing schemepL for av1-rooted
single-source problem on the segmentσ. In particular, it is not difficult to verify that the underlying set
of customers would beCL(σ), with paths restricted to the segmentσ, and moreover, that each customeri
will be associated with a newly-defined budget of min{pΓ(σ), bi −

∑

σ̄:σ̄⊆Pi
pΓ(σ̄)}. Notice that the pricing

schemepΓ forms a feasible solution to this instance, implying that ifRσpL
(i) denotes the overall revenue

from customeri along the segmentσ with respect topL, we have
∑

i∈CL(σ)

RσpL
(i) ≥

∑

i∈CL (σ):
si∈σ

RS̃
pΓ(i) +

∑

i∈CL (σ):
ti∈σ

RT̃
pΓ(i) .
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Similarly, with probability 1/4, we compute an optimal pricing schemepR for a vℓ-rooted single-source
problem, and using almost identical arguments, obtain the inequality

∑

i∈CR(σ)

RσpR
(i) ≥

∑

i∈CR(σ):
si∈σ

RS̃
pΓ(i) +

∑

i∈CR(σ):
ti∈σ

RT̃
pΓ(i) .

We proceed by showing that for every productive customeri ∈ C(σ), with probability at least 1/4, the
total price that will be assigned to the pathPi , excluding edges residing within the segmentσ, is exactly
∑

σ̄:σ̄⊆Pi
pΓ(σ̄). In this case, the (global) budgetbi is not exceeded, since customeri was given a budget

of no more thanbi −
∑

σ̄:σ̄⊆Pi
pΓ(σ̄) in the single-source problem onσ. Prior to proving this claim, we

remark that it is indeed sufficient to conclude Case II, since the overall expected revenue would be at least

1
16

∑

σ∈Σ(S)



















∑

i∈CL(σ)

RσpL
(i) +

∑

i∈CR(σ)

RσpR
(i)



















≥
1
16

∑

σ∈Σ(S)





























∑

i∈CL (σ):
si∈σ

RS̃
pΓ(i) +

∑

i∈CL (σ):
ti∈σ

RT̃
pΓ(i) +

∑

i∈CR(σ):
si∈σ

RS̃
pΓ(i) +

∑

i∈CR(σ):
ti∈σ

RT̃
pΓ(i)





























=
1
16

∑

σ∈Σ(S)

∑

i∈C(σ)

(

RS̃
pΓ(i) + RT̃

pΓ(i)
)

=
1
16

n
∑

i=1

(

RS̃
pΓ(i) + RT̃

pΓ(i)
)

≥
OPT
256

.

To prove the last claim, consider some particular customeri ∈ C(σ), and without loss of generality,
suppose that the endpoint ofPi that resides within the segmentσ is si . We therefore focus on bounding the
total price of the subpath connectingusi andti , which can be broken into two probabilistically-independent
parts:

• A subpath betweenusi and uti , along a sequence of complete segments. By Invariant 3.3, with
probability 1, the total price of each complete segment ¯σ is pΓ(σ̄), immediately implying that the
total price ofusi ! uti is

∑

σ̄:σ̄⊆Pi
pΓ(σ̄).

• A subpath, along a partial segment (different fromσ), betweenti anduti . Here, with probability at
least 1/4, each and every edge onti ! uti is assigned a zero price. The arguments for proving this
case are identical to those in Case I, and we do not repeat themto avoid duplicity.

3.3 Derandomization

The avid reader may already have noticed that the extent to which we utilize randomization is rather
limited, and that its foremost purpose is to make the presentation of our algorithm significantly simpler.
More specifically, in Scenario I each subtree in the decomposition is randomly marked as being active
or inactive, whereas in Scenario II one of four possible price assignments is picked at random for each
segment. In other words, all we need to obtain a deterministic algorithm are two uniform sample spaces,
with O(1) possible values forO(log1/2 m) random variables. These can be constructed in polynomial
time either explicitly, as there are onlyO(mO(1)) outcomes to examine, or in a more compact way, by
observing that nothing more than pairwise-independence (see, for instance, [2, Chap. 15]) is required for
the preceding analysis.
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A Additional Proofs

A.1 Proof of Lemma 2.2

We begin by presenting a well-known result regarding centroid decompositions in trees.

Definition A.1. Let T = (V,E) be a tree. Acentroid decompositionof T is a partition ofT into two edge-
disjoint subtrees (sharing a common vertex) such that each subtree contains between|E|/3 and 2|E|/3
edges.

Theorem A.2. ([17]) Let T = (V,E) be a tree with|E| ≥ 2. A centroid decomposition of T exists and can
be found in linear time.

We now propose an iterative process for generating an almostbalancedk-decomposition ofT in
polynomial time. This process consists ofk − 1 steps, where in each step a centroid decomposition is
applied to a subtree having maximal number of edges. That is,in the first step, a centroid decomposition
is applied toT and results in subtreesT1 andT2; in the second step, a centroid decomposition is applied
to the subtree with maximal number of edges (out ofT1 andT2); so forth and so on. Clearly, this process
can be implemented to run in polynomial time, as implied by Theorem A.2.

We argue that the collection ofk subtrees resulting from this process is indeed an almost balanced
k-decomposition, noting in advance that the number of vertices shared by at least two subtrees is less than
k. For this purpose, we are left to prove that each subtree contains between|E|/(3k) and 3|E|/k edges. We
next claim that in each step, the number of edges in the maximal subtree, i.e., the subtree that has maximal

12



number of edges, is no more than 3 times greater than the number of edges in the minimal subtree, i.e.,
the subtree with minimal number of edges. This claim impliesthat, at the end of the process, each subtree
must have at least|E|/(3k) edges. Otherwise, it follows that allk subtrees must have less than|E|/k edges,
and thus, the decomposition consists of less than|E| edges. By employing similar arguments, one can
show that each subtree has no more than 3|E|/k edges.

We turn to prove the above-mentioned claim by induction on the number of steps performed. At
the beginning of the process, the claim trivially holds. Now, suppose the claim holds at the beginning
of some step. Namely, the maximal subtree hasrmax edges, the minimal subtree hasrmin edges, and
rmax/rmin ≤ 3. Recall that the centroid decomposition partitions a subtree with maximal number of edges
into two subtrees that contain betweenrmax/3 and 2rmax/3 edges. This implies that at the beginning of
the following step, the maximal subtree has no more thanrmax edges, while the minimal subtree has at
least min{rmin, rmax/3} edges. Notice that in either case, the size ratio between themaximal and minimal
subtrees is at most 3.

A.2 Proof of Lemma 3.2

The general idea behind our proof is to perform a sequence of modifications to the optimal pricing scheme
p∗, trying to arrive at a new schemepΓ that satisfies the required properties. For this purpose, webegin
by observing that, without loss of generality,p∗(e) ≤ bmax for every edgee ∈ E; otherwise, by setting
p∗(e) = bmax, the overall revenue may only improve. We now separately consider each segmentσ ∈ Σ(S),
and proceed as follows:

1. If p∗(σ) < bmax/(4nm), we set the price of every edge inσ to zero.

2. If bmax/(4nm) ≤ p∗(σ) ≤ mbmax, we uniformly scale down the prices of all edges inσ such that the
newly-defined price ofσ will be equal to the maximal valueγ ∈ Γ such thatγ ≤ p∗(σ). For this
purpose, the scaling factor is simplyγ/p∗(σ) ≥ 1/2, where the last inequality holds sinceΓ consists
of a geometric sequence betweenbmax/(4nm) andmbmax, with a multiplier of 2.

This construction clearly satisfies the first property, and it remains to prove
∑n

i=1 RM
pΓ(i) ≥

∑n
i=1 RM

p∗(i)/4.
To validate the last inequality, note that our modificationsmay lead to two types of revenue losses: additive
(due to item 1) and multiplicative (due to item 2). The additive loss can be easily bounded by observing
that each edge appears at most once on any customer path and that the skeleton consists of at mostm
edges. Therefore, the entire contribution of edges that were modified in the first item can be bounded by

nm·
bmax

4nm
=

bmax

4
≤

OPT
4
≤

1
2

n
∑

i=1

RM
p∗(i) ,

where the first inequality holds since OPT≥ bmax, as an overall revenue ofbmax can obviously be attained.
In addition, the multiplicative loss can be bounded by noting that the scaling factor in the second item is
at least 1/2. It follows that

∑n
i=1 RM

pΓ(i) ≥
∑n

i=1 RM
p∗(i)/4.
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