Abstract
We consider the problem of constructing optimal decision trees: given a collection of tests which can disambiguate between a set of m possible diseases, each test having a cost, and the a-priori likelihood of the patient having any particular disease, what is a good adaptive strategy to perform these tests to minimize the expected cost to identify the disease? We settle the approximability of this problem by giving a tight O(logm)-approximation algorithm.
We also consider a more substantial generalization, the Adaptive TSP problem, which can be used to model switching costs between tests in the optimal decision tree problem. Given an underlying metric space, a random subset S of cities is drawn from a known distribution, but S is initially unknown to us—we get information about whether any city is in S only when we visit the city in question. What is a good adaptive way of visiting all the cities in the random subset S while minimizing the expected distance traveled? For this adaptive TSP problem, we give the first poly-logarithmic approximation, and show that this algorithm is best possible unless we can improve the approximation guarantees for the well-known group Steiner tree problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adler, M., Heeringa, B.: Approximating Optimal Binary Decision Trees. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 1–9. Springer, Heidelberg (2008)
Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, W.R., Raghavan, P., Sudan, M.: The minimum latency problem. In: STOC, pp. 163–171 (1994)
Chakaravarthy, V., Pandit, V., Roy, S., Sabharwal, Y.: Approximating Decision Trees with Multiway Branches. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 210–221. Springer, Heidelberg (2009)
Chakravarthy, V.T., Pandit, V., Roy, S., Awasthi, P., Mohania, M.: Decision Trees for Entity Identification: Approximation Algorithms and Hardness Results. In: PODS (2007)
Charikar, M., Chekuri, C., Goel, A., Guha, S.: Rounding via trees: deterministic approximation algorithms for group Steiner trees and k median. In: STOC, pp. 114–123 (1998)
Chaudhuri, K., Godfrey, B., Rao, S., Talwar, K.: Paths, trees, and minimum latency tours. In: FOCS, pp. 36–45 (2003)
Chawla, S., Roughgarden, T.: Single-source stochastic routing. In: DĂaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 82–94. Springer, Heidelberg (2006)
Dasgupta, S.: Analysis of a greedy active learning strategy. In: Advances in Neural Information Processing Systems, NIPS (2004)
Dean, B.C., Goemans, M.X., Vondrák, J.: Approximating the stochastic knapsack problem: The benefit of adaptivity. In: FOCS, pp. 208–217 (2004)
Fakcharoenphol, J., Harrelson, C., Rao, S.: The k-traveling repairmen problem. ACM Transactions on Algorithms 3(4) (2007)
Feige, U., Lovász, L., Tetali, P.: Approximating min sum set cover. Algorithmica 40(4), 219–234 (2004)
Garg, N., Konjevod, G., Ravi, R.: A Polylogarithmic Approximation Algorithm for the Group Steiner Tree Problem. Journal of Algorithms 37(1), 66–84 (2000)
Goemans, M., Vondrák, J.: Stochastic covering and adaptivity. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 532–543. Springer, Heidelberg (2006)
Golovin, D., Krause, A.: Adaptive Submodularity: A New Approach to Active Learning and Stochastic Optimization (2010), http://arxiv.org/abs/1003.3967
Guha, S., Munagala, K.: Approximation algorithms for budgeted learning problems. In: STOC, pp. 104–113. ACM, New York (2007); Full version as Sequential Design of Experiments via Linear Programming, http://arxiv.org/abs/0805.2630v1
Guha, S., Munagala, K.: Multi-armed bandits with metric switching costs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 496–507. Springer, Heidelberg (2009)
Guha, S., Munagala, K., Sarkar, S.: Information acquisition and exploitation in multichannel wireless networks. CoRR, abs/0804.1724 (2008)
Guillory, A., Bilmes, J.: Average-Case Active Learning with Costs. In: Gavaldà , R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS, vol. 5809, pp. 141–155. Springer, Heidelberg (2009)
Gupta, A., Hajiaghayi, M.T., Räcke, H.: Oblivious network design. In: SODA, pp. 970–979 (2006)
Gupta, A., Nagarajan, V., Ravi, R.: Approximation Algorithms for Optimal Decision Trees and Adaptive TSP Problems (full version). ArXiv (2010), http://arxiv.org/abs/1003.0722
Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: STOC, pp. 585–594 (2003)
Hyafil, L., Rivest, R.L.: Constructing optimal binary decision trees is NP-complete. Information Processing Lett. 5(1), 15–17 (1976/1977)
Jaillet, P.: A priori solution of a travelling salesman problem in which a random subset of the customers are visited. Operations Research 36(6) (1988)
Jia, L., Lin, G., Noubir, G., Rajaraman, R., Sundaram, R.: Universal approximations for TSP, Steiner tree, and set cover. In: STOC, pp. 386–395 (2005)
Kosaraju, S.R., Przytycka, T.M., Borgstrom, R.S.: On an Optimal Split Tree Problem. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 157–168. Springer, Heidelberg (1999)
Liu, Z., Parthasarathy, S., Ranganathan, A., Yang, H.: Near-optimal algorithms for shared filter evaluation in data stream systems. In: SIGMOD, pp. 133–146 (2008)
Munagala, K., Srivastava, U., Widom, J.: Optimization of continuous queries with shared expensive filters. In: PODS, pp. 215–224 (2007)
Nagarajan, V.: Approximation Algorithms for Sequencing Problems. PhD thesis, Tepper School of Business, Carnegie Mellon University (2009)
Nowak, R.D.: The geometry of generalized binary search. arXiv.org:0910.4397 (2009)
Schalekamp, F., Shmoys, D.: Algorithms for the universal and a priori TSP. Operations Research Letters 36(1), 1–3 (2008)
Shmoys, D., Talwar, K.: A Constant Approximation Algorithm for the a priori Traveling Salesman Problem. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 331–343. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gupta, A., Nagarajan, V., Ravi, R. (2010). Approximation Algorithms for Optimal Decision Trees and Adaptive TSP Problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14165-2_58
Download citation
DOI: https://doi.org/10.1007/978-3-642-14165-2_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14164-5
Online ISBN: 978-3-642-14165-2
eBook Packages: Computer ScienceComputer Science (R0)