Skip to main content

Approximation Algorithms for Optimal Decision Trees and Adaptive TSP Problems

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6198))

Included in the following conference series:

Abstract

We consider the problem of constructing optimal decision trees: given a collection of tests which can disambiguate between a set of m possible diseases, each test having a cost, and the a-priori likelihood of the patient having any particular disease, what is a good adaptive strategy to perform these tests to minimize the expected cost to identify the disease? We settle the approximability of this problem by giving a tight O(logm)-approximation algorithm.

We also consider a more substantial generalization, the Adaptive TSP problem, which can be used to model switching costs between tests in the optimal decision tree problem. Given an underlying metric space, a random subset S of cities is drawn from a known distribution, but S is initially unknown to us—we get information about whether any city is in S only when we visit the city in question. What is a good adaptive way of visiting all the cities in the random subset S while minimizing the expected distance traveled? For this adaptive TSP problem, we give the first poly-logarithmic approximation, and show that this algorithm is best possible unless we can improve the approximation guarantees for the well-known group Steiner tree problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adler, M., Heeringa, B.: Approximating Optimal Binary Decision Trees. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 1–9. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, W.R., Raghavan, P., Sudan, M.: The minimum latency problem. In: STOC, pp. 163–171 (1994)

    Google Scholar 

  3. Chakaravarthy, V., Pandit, V., Roy, S., Sabharwal, Y.: Approximating Decision Trees with Multiway Branches. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 210–221. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Chakravarthy, V.T., Pandit, V., Roy, S., Awasthi, P., Mohania, M.: Decision Trees for Entity Identification: Approximation Algorithms and Hardness Results. In: PODS (2007)

    Google Scholar 

  5. Charikar, M., Chekuri, C., Goel, A., Guha, S.: Rounding via trees: deterministic approximation algorithms for group Steiner trees and k median. In: STOC, pp. 114–123 (1998)

    Google Scholar 

  6. Chaudhuri, K., Godfrey, B., Rao, S., Talwar, K.: Paths, trees, and minimum latency tours. In: FOCS, pp. 36–45 (2003)

    Google Scholar 

  7. Chawla, S., Roughgarden, T.: Single-source stochastic routing. In: DĂ­az, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 82–94. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Dasgupta, S.: Analysis of a greedy active learning strategy. In: Advances in Neural Information Processing Systems, NIPS (2004)

    Google Scholar 

  9. Dean, B.C., Goemans, M.X., Vondrák, J.: Approximating the stochastic knapsack problem: The benefit of adaptivity. In: FOCS, pp. 208–217 (2004)

    Google Scholar 

  10. Fakcharoenphol, J., Harrelson, C., Rao, S.: The k-traveling repairmen problem. ACM Transactions on Algorithms 3(4) (2007)

    Google Scholar 

  11. Feige, U., Lovász, L., Tetali, P.: Approximating min sum set cover. Algorithmica 40(4), 219–234 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Garg, N., Konjevod, G., Ravi, R.: A Polylogarithmic Approximation Algorithm for the Group Steiner Tree Problem. Journal of Algorithms 37(1), 66–84 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Goemans, M., Vondrák, J.: Stochastic covering and adaptivity. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 532–543. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Golovin, D., Krause, A.: Adaptive Submodularity: A New Approach to Active Learning and Stochastic Optimization (2010), http://arxiv.org/abs/1003.3967

  15. Guha, S., Munagala, K.: Approximation algorithms for budgeted learning problems. In: STOC, pp. 104–113. ACM, New York (2007); Full version as Sequential Design of Experiments via Linear Programming, http://arxiv.org/abs/0805.2630v1

  16. Guha, S., Munagala, K.: Multi-armed bandits with metric switching costs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 496–507. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Guha, S., Munagala, K., Sarkar, S.: Information acquisition and exploitation in multichannel wireless networks. CoRR, abs/0804.1724 (2008)

    Google Scholar 

  18. Guillory, A., Bilmes, J.: Average-Case Active Learning with Costs. In: GavaldĂ , R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS, vol. 5809, pp. 141–155. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Gupta, A., Hajiaghayi, M.T., Räcke, H.: Oblivious network design. In: SODA, pp. 970–979 (2006)

    Google Scholar 

  20. Gupta, A., Nagarajan, V., Ravi, R.: Approximation Algorithms for Optimal Decision Trees and Adaptive TSP Problems (full version). ArXiv (2010), http://arxiv.org/abs/1003.0722

  21. Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: STOC, pp. 585–594 (2003)

    Google Scholar 

  22. Hyafil, L., Rivest, R.L.: Constructing optimal binary decision trees is NP-complete. Information Processing Lett. 5(1), 15–17 (1976/1977)

    Google Scholar 

  23. Jaillet, P.: A priori solution of a travelling salesman problem in which a random subset of the customers are visited. Operations Research 36(6) (1988)

    Google Scholar 

  24. Jia, L., Lin, G., Noubir, G., Rajaraman, R., Sundaram, R.: Universal approximations for TSP, Steiner tree, and set cover. In: STOC, pp. 386–395 (2005)

    Google Scholar 

  25. Kosaraju, S.R., Przytycka, T.M., Borgstrom, R.S.: On an Optimal Split Tree Problem. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 157–168. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  26. Liu, Z., Parthasarathy, S., Ranganathan, A., Yang, H.: Near-optimal algorithms for shared filter evaluation in data stream systems. In: SIGMOD, pp. 133–146 (2008)

    Google Scholar 

  27. Munagala, K., Srivastava, U., Widom, J.: Optimization of continuous queries with shared expensive filters. In: PODS, pp. 215–224 (2007)

    Google Scholar 

  28. Nagarajan, V.: Approximation Algorithms for Sequencing Problems. PhD thesis, Tepper School of Business, Carnegie Mellon University (2009)

    Google Scholar 

  29. Nowak, R.D.: The geometry of generalized binary search. arXiv.org:0910.4397 (2009)

    Google Scholar 

  30. Schalekamp, F., Shmoys, D.: Algorithms for the universal and a priori TSP. Operations Research Letters 36(1), 1–3 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Shmoys, D., Talwar, K.: A Constant Approximation Algorithm for the a priori Traveling Salesman Problem. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 331–343. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gupta, A., Nagarajan, V., Ravi, R. (2010). Approximation Algorithms for Optimal Decision Trees and Adaptive TSP Problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14165-2_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14165-2_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14164-5

  • Online ISBN: 978-3-642-14165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics