Skip to main content

Testing 2-Vertex Connectivity and Computing Pairs of Vertex-Disjoint s-t Paths in Digraphs

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6198))

Included in the following conference series:

  • 1608 Accesses

Abstract

We present an O(m + n)-time algorithm that tests if a given directed graph is 2-vertex connected, where m is the number of arcs and n is the number of vertices. Based on this result we design an O(n)-space data structure that can compute in O(log2 n) time two internally vertex-disjoint paths from s to t, for any pair of query vertices s and t of a 2-vertex connected directed graph. The two paths can be reported in additional O(k) time, where k is their total length.

This research project has been funded by the John S. Latsis Public Benefit Foundation. The sole responsibility for the content of this paper lies with its author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools. Addison-Wesley, Reading (1986)

    Google Scholar 

  2. Alstrup, S., Harel, D., Lauridsen, P.W., Thorup, M.: Dominators in linear time. SIAM Journal on Computing 28(6), 2117–2132 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications (Springer Monographs in Mathematics), 1st edn., 3rd printing edn. Springer, Heidelberg (2002)

    Google Scholar 

  4. Beame, P., Fich, F.E.: Optimal bounds for the predecessor problem and related problems. J. Comput. Syst. Sci. 65(1), 38–72 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Buchsbaum, A.L., Georgiadis, L., Kaplan, H., Rogers, A., Tarjan, R.E., Westbrook, J.R.: Linear-time algorithms for dominators and other path-evaluation problems. SIAM Journal on Computing 38(4), 1533–1573 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Buchsbaum, A.L., Kaplan, H., Rogers, A., Westbrook, J.R.: A new, simpler linear-time dominators algorithm. ACM Transactions on Programming Languages and Systems 20(6), 1265–1296 (1998); Corrigendum appeared 27(3), 383-387 (2005)

    Google Scholar 

  7. Chan, T.M., Patraşcu, M.: Transdichotomous results in computational geometry, i: Point location in sublogarithmic time. SIAM Journal on Computing 39(2), 703–729 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chazelle, B.: Filtering search: A new approach to query-answering. SIAM Journal on Computing 15(3), 703–724 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cheriyan, J., Reif, J.H.: Directed s-t numberings, rubber bands, and testing digraph k-vertex connectivity. Combinatorica, 435–451 (1994)

    Google Scholar 

  10. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9(3), 251–280 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stei, C.: Introduction to Algorithms, 2nd edn. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  12. Gabow, H.N.: Using expander graphs to find vertex connectivity. Journal of the ACM 53(5), 800–844 (2006)

    Article  MathSciNet  Google Scholar 

  13. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. Journal of Computer and System Sciences 30(2), 209–221 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. Georgiadis, L.: Linear-Time Algorithms for Dominators and Related Problems. PhD thesis, Princeton University (2005)

    Google Scholar 

  15. Georgiadis, L., Tarjan, R.E.: Finding dominators revisited. In: Proc. 15th ACM-SIAM Symp. on Discrete Algorithms, pp. 862–871 (2004)

    Google Scholar 

  16. Georgiadis, L., Tarjan, R.E.: Dominator tree verification and vertex-disjoint paths. In: Proc. 16th ACM-SIAM Symp. on Discrete Algorithms, pp. 433–442 (2005)

    Google Scholar 

  17. Georgiadis, L., Tarjan, R.E., Werneck, R.F.: Finding dominators in practice. Journal of Graph Algorithms and Applications (JGAA) 10(1), 69–94 (2006)

    MATH  MathSciNet  Google Scholar 

  18. Henzinger, M.R., Rao, S., Gabow, H.N.: Computing vertex connectivity: New bounds from old techniques. Journal of Algorithms 34, 222–250 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM Journal on Computing 2(3), 135–158 (1973)

    Article  MathSciNet  Google Scholar 

  20. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph. ACM Transactions on Programming Languages and Systems 1(1), 121–141 (1979)

    Article  MATH  Google Scholar 

  21. Nagamochi, H., Ibaraki, T.: A linear-time algorithm for finding a sparse k-connected spanning subgraph of a k-connected graph. Algorithmica 7, 583–596

    Google Scholar 

  22. Sarnak, N., Tarjan, R.E.: Planar point location using persistent search trees. Communications of the ACM 29(7), 669–679 (1986)

    Article  MathSciNet  Google Scholar 

  23. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM Journal on Computing 1(2), 146–159 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  24. Tarjan, R.E.: Edge-disjoint spanning trees and depth-first search. Acta Informatica 6(2), 171–185 (1976)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Georgiadis, L. (2010). Testing 2-Vertex Connectivity and Computing Pairs of Vertex-Disjoint s-t Paths in Digraphs. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14165-2_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14165-2_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14164-5

  • Online ISBN: 978-3-642-14165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics