Skip to main content

The Cooperative Game Theory Foundations of Network Bargaining Games

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6198))

Included in the following conference series:

Abstract

We study bargaining games between suppliers and manufacturers in a network context. Agents wish to enter into contracts in order to generate surplus which then must be divided among the participants. Potential contracts and their surplus are represented by weighted edges in our bipartite network. Each agent in the market is additionally limited by a capacity representing the number of contracts which he or she may undertake. When all agents are limited to just one contract each, prior research applied natural generalizations of the Nash bargaining solution to the networked setting, defined the new solution concepts of stable and balanced, and characterized the resulting bargaining outcomes. We simplify and generalize these results to a setting in which participants in only one side of the market are limited to one contract each. The core of our results uses a linear-programming formulation to establish a novel connection between well-studied cooperative game theory concepts and the solution concepts of core and prekernel defined for the bargaining games. This immediately implies one can take advantage of the results and algorithms in cooperative game theory to reproduce results such as those of Azar et al. [1] and Kleinberg and Tardos [28] and generalize them to our setting. The cooperative-game-theoretic connection also inspires us to refine our solution space using standard solution concepts from that literature such as nucleolus and lexicographic kernel. The nucleolus is particularly attractive as it is unique, always exists, and is supported by experimental data in the network bargaining literature. Guided by algorithms from cooperative game theory, we show how to compute the nucleolus by pruning and iteratively solving a natural linear-programming formulation.

The full version of this extended abstract is available as [3], which contains all the missing proofs as well as more discussion about the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Azar, Y., Birnbaum, B., Celis, L.E., Devanur, N.R., Peres, Y.: Convergence of local dynamics to balanced outcomes in exchange networks. In: FOCS (2009)

    Google Scholar 

  2. Azar, Y., Devanur, N.R., Jain, K., Peres, Y.: Monotonicity in bargaining games. In: SODA (2010)

    Google Scholar 

  3. Bateni, M., Hajiaghayi, M., Immorlica, N., Mahini, H.: The cooperative game theory foundations of network bargaining games, CoRR, abs/1004.4317 (2010)

    Google Scholar 

  4. Bondareva, O.N.: Some applications of linear programming to cooperative games. Problemy Kibernetiki 10, 119–139 (1963)

    MathSciNet  Google Scholar 

  5. Bosse, H., Byrka, J., Markakis, E.: New algorithms for approximate nash equilibria in bimatrix games. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 17–29. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Chakraborty, T., Kearns, M.: Bargaining solutions in a social network. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 548–555. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Chakraborty, T., Kearns, M., Khanna, S.: Network bargaining: Algorithms and structural results. In: EC (2009)

    Google Scholar 

  8. Charness, G., Corominas-Bosch, M., Frechette, G.R.: Bargaining and Network Structure: An Experiment, SSRN eLibrary (2005)

    Google Scholar 

  9. Chen, X., Deng, X.: Settling the complexity of two-player nash equilibrium. In: FOCS, pp. 261–272 (2006)

    Google Scholar 

  10. Chen, X., Deng, X., Teng, S.-H.: Computing nash equilibria: Approximation and smoothed complexity. In: FOCS 2006: 47th Annual IEEE Symposium on Foundations of Computer Science, pp. 603–612. IEEE Computer Society, Los Alamitos (2006)

    Chapter  Google Scholar 

  11. Conitzer, V., Sandholm, T.: Complexity of determining nonemptiness of the core. In: EC, pp. 230–231 (2003)

    Google Scholar 

  12. Daskalakis, C., Mehta, A., Papadimitriou, C.H.: A note on approximate nash equilibria. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 297–306. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Daskalakis, C., Papadimitriou, C.H.: On oblivious ptas’s for nash equilibrium. In: STOC, pp. 75–84 (2009)

    Google Scholar 

  14. Davis, M., Maschler, M.: The kernel of a cooperative game. Naval Research Logistics Quarterly 12, 223–259 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  15. Deng, X., Fang, Q., Sun, X.: Finding nucleolus of flow game. In: SODA, pp. 124–131 (2006)

    Google Scholar 

  16. Driessen, T.S.H.: Cooperative Games: Solutions and Applications. Kluwer Academic Publishers, Dordrecht (1988)

    MATH  Google Scholar 

  17. Faigle, U., Kern, W., Fekete, S.P., Hochstättler, W.: The nucleon of cooperative games and an algorithm for matching games. Mathematical Programming 83, 195–211 (1998)

    MathSciNet  Google Scholar 

  18. Faigle, U., Kern, W., Kuipers, J.: Computing the nucleolus of min-cost spanning tree games is np-hard. International Journal of Game Theory 27, 443–450 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Faigle, U., Kern, W., Kuipers, J.: An efficient algorithm for nucleolus and prekernel computation in some classes of TU-games, Memorandum 1464, University of Twente, Enschede (1998)

    Google Scholar 

  20. Faigle, U., Kern, W., Kuipers, J.: On the computation of the nucleolus of a cooperative game. International Journal of Game Theory 30, 79–98 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Faigle, U., Kern, W., Kuipers, J.: Computing an element in the lexicographic kernel of a game. Mathematical methods of operations research 63, 427–433 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gilies, D.B.: Solutions to general non-zero-sum games. Ann. Math. Studies 40, 47–85 (1959)

    Google Scholar 

  23. Granot, D., Maschler, M., Owen, G., Zhu, W.R.: The kernel/nucleolus of a standard tree game. International Journal of Game Theory 25(2), 219–244 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Immorlica, N., Mahdian, M., Mirrokni, V.S.: Limitations of cross-monotonic cost sharing schemes. In: SODA, pp. 602–611 (2005)

    Google Scholar 

  25. Jain, K., Vazirani, V.: Applications of approximation algorithms to cooperative games. In: STOC, pp. 364–372 (2001)

    Google Scholar 

  26. Kanoria, Y., Bayati, M., Borgs, C., Chayes, J.T., Montanari, A.: A natural dynamics for bargaining on exchange networks, CoRR, abs/0911.1767 (2009)

    Google Scholar 

  27. Kern, W., Paulusma, D.: Matching games: the least core and the nucleolus. Math. Oper. Res. 28(2), 294–308 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kleinberg, J., Tardos, É.: Balanced outcomes in social exchange networks. In: STOC, pp. 295–304 (2008)

    Google Scholar 

  29. Kontogiannis, S.C., Spirakis, P.G.: Efficient algorithms for constant well supported approximate equilibria in bimatrix games. In: ICALP, pp. 595–606 (2007)

    Google Scholar 

  30. Markakis, E., Saberi, A.: On the core of the multicommodity flow game. In: EC, pp. 93–97 (2003)

    Google Scholar 

  31. Meinhardt, H.: An lp approach to compute the pre-kernel for cooperative games. Computers & Operations Research 33, 535–557 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Nash, J.F.: The bargaining problem. Econometrica 18, 155–162 (1950)

    Article  MathSciNet  Google Scholar 

  33. Neumann, J.V., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)

    MATH  Google Scholar 

  34. Potters, J.A.M.: An axiomatization of the nucleolus. International Journal of Game Theory 19(4), 365–373 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  35. Schmeidler, D.: The nucleolus of a characteristic function game. SIAM Journal of Applied Mathematics 17(6), 1163–1170 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  36. Shapley, L.S., Shubik, M.: The assignment game i: the core. International Journal of Game Theory, 111–130 (1972)

    Google Scholar 

  37. Shapley, L.S.: On balanced sets and cores. Naval Research Logistics Quarterly 14, 453–460 (1967)

    Article  Google Scholar 

  38. Snijders, C.: Axiomatization of the nucleolus. Math. Oper. Res. 20(1), 189–196 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  39. Sobolev, A.: The nucleolus for cooperative games with arbitrary bounds of individual rationality. International Journal of Game Theory 24, 13–22 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  40. Solymosi, T., Raghavan, T.E.S.: An algorithm for finding the nucleolus of assignment games. International Journal of Game Theory 23, 119–143 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  41. Stearns, R.E.: Convergent transfer schemes for n-person games. Transactions of American Mathematical Society 134, 449–459 (1968)

    MATH  MathSciNet  Google Scholar 

  42. Tsaknakis, H., Spirakis, P.G.: An optimization approach for approximate nash equilibria. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 42–56. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  43. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice-Hall, Englewood Cliffs (2000)

    Google Scholar 

  44. Yarom, M.: The lexicographic kernel of a cooperative game. Math. Oper. Res. 6, 66–100 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bateni, M., Hajiaghayi, M., Immorlica, N., Mahini, H. (2010). The Cooperative Game Theory Foundations of Network Bargaining Games. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14165-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14165-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14164-5

  • Online ISBN: 978-3-642-14165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics