Skip to main content

Recursive Probability Trees for Bayesian Networks

  • Conference paper
Current Topics in Artificial Intelligence (CAEPIA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5988))

Included in the following conference series:

Abstract

This paper proposes a new data structure for representing potentials. Recursive probability trees are a generalization of probability trees. Both structures are able to represent context-specific independencies, but the new one is also able to hold a potential in a factorized way. This new structure can represent some kinds of potentials in a more efficient way than probability trees, and it can be the case that only recursive trees are able to represent certain factorizations. Basic operations for inference in Bayesian networks can be directly performed upon recursive probability trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pearl, J.: Probabilistic Reasoning with Intelligent Systems. Morgan & Kaufman, San Mateo (1988)

    Google Scholar 

  2. Cano, A., Moral, S., Salmerón, A.: Penniless propagation in join trees. International Journal of Intelligent Systems 15(11), 1027–1059 (2000)

    Article  MATH  Google Scholar 

  3. Kozlov, D., Koller, D.: Nonuniform dynamic discretization in hybrid networks. In: Geiger, D., Shenoy, P. (eds.) Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence, pp. 302–313. Morgan & Kaufmann, San Francisco (1997)

    Google Scholar 

  4. Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific independence in Bayesian networks. In: Proceedings of the Twelfth Annual Conference on Uncertainty in Artificial Intelligence (UAI 1996), Portland, Oregon, pp. 115–123 (1996)

    Google Scholar 

  5. Martínez, I., Moral, S., Rodríguez, C., Salmerón, A.: Factorisation of probability trees and its application to inference in bayesian networks. In: Proceedings of the First European Workshop on Probabilistic Graphical Models, Cuenca, Spain, pp. 127–134 (2002)

    Google Scholar 

  6. Martínez, I., Moral, S., Rodríguez, C., Salmerón, A.: Approximate factorisation of probability trees. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 51–62. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Martínez, I., Rodríguez, C., Salmerón, A.: Dynamic importance sampling in bayesian netwos using factorisation of probability trees. In: Proceedings of the Third European Workshop on Probabilistic Graphical Models, pp. 187–194 (2006)

    Google Scholar 

  8. Salmerón, A., Cano, A., Moral, S.: Importance sampling in Bayesian networks using probability trees. Computational Statistics and Data Analysis 34, 387–413 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Madsen, A.L., Jensen, F.V.: Lazy propagation in junction trees. In: Proceedings of the Fourteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI 1998), pp. 362–369. Morgan Kaufmann Publishers, San Francisco (1998)

    Google Scholar 

  10. Cano, A., Moral, S., Salmerón, A.: Lazy evaluation in penniless propagation over join trees. Networks 39(4), 175–185 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kohlas, J., Shenoy, P.P.: Computation in valuation algebras. In: Gabbay, D.M., Smets, P. (eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems. Algorithms for Uncertainty and Defeasible Reasoning, vol. 5, pp. 5–39. Kluwer, Dordrecht (1999)

    Google Scholar 

  12. Dechter, R.: Mini-buckets: A general scheme for generating approximations in automated reasoning. In: Proc. International Joint Conference of Artificial Intelligence (IJCAI 1997), Japan, pp. 1297–1302 (1997)

    Google Scholar 

  13. Geiger, D., Heckerman, D.: Knowledge representation and inference in similarity networks and bayesian multinets. Artificial Intelligence 82(1-2), 45–74 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cano, A., Gómez-Olmedo, M., Moral, S., Pérez-Ariza, C.B. (2010). Recursive Probability Trees for Bayesian Networks. In: Meseguer, P., Mandow, L., Gasca, R.M. (eds) Current Topics in Artificial Intelligence. CAEPIA 2009. Lecture Notes in Computer Science(), vol 5988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14264-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14264-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14263-5

  • Online ISBN: 978-3-642-14264-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics