Abstract
Creation and adaptation of workflows is a difficult and costly task that is currently performed by human workflow modeling experts. Our paper describes a new approach for the automatic adaptation of workflows, which makes use of a case base of former workflow adaptations. We propose a general framework for case-based adaptation of workflows and then focus on novel methods to represent and reuse previous adaptation episodes for workflows. An empirical evaluation demonstrates the feasibility of the approach and provides valuable insights for future research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Workflow management coalition glossary & terminology, http://www.wfmc.org
Weber, B., Wild, W.: Towards the agile management of business processes. In: Althoff, K.-D., Dengel, A.R., Bergmann, R., Nick, M., Roth-Berghofer, T.R. (eds.) WM 2005. LNCS (LNAI), vol. 3782, pp. 409–419. Springer, Heidelberg (2005)
Minor, M., Tartakovski, A., Schmalen, D., Bergmann, R.: Agile Workflow Technology and Case-Based Change Reuse for Long-Term Processes. International Journal on Intelligent Information Technologies 4(1), 80–98 (2008)
Weber, B., Wild, W., Breu, R.: Cbrflow: Enabling adaptive workflow management through conversational case-based reasoning. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 434–448. Springer, Heidelberg (2004)
Madhusudan, T., Zhao, J.L., Marshall, B.: A case-based reasoning framework for workflow model management. Data and Knowledge Engineering 50, 87–115 (2004)
Minor, M., Tartakovski, A., Bergmann, R.: Representation and Structure-Based Similarity Assessment for Agile Workflows. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 224–238. Springer, Heidelberg (2007)
Gil, Y., Kim, J., Florenz, G., Ratnakar, V., Gonzalez-Calero, P.: Workflow Matching Using Semantic Metadata. In: Proc. of the 5th Int. Conf. on Knowledge Capture (K-CAP), pp. 121–128. ACM, New York (2009)
Leake, D.B., Kendall-Morwick, J.: Towards Case-Based Support for e-Science Workflow Generation by Mining Provenance. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 269–283. Springer, Heidelberg (2008)
Bergmann, R., Freßmann, A., Maximini, K., Maximini, R., Sauer, T.: Case-based support for collaborative business. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 519–533. Springer, Heidelberg (2006)
Montani, S.: Prototype-based management of business process exception cases. Applied Intelligence, Springer Science + Business Media, LLC 2009 (2009) (Published online)
Cox, M.T., Muñoz-Avila, H., Bergmann, R.: Case-based planning. The Knowledge Engineering Review 20(3), 283–287 (2005)
Muñoz-Avila, H., Cox, M.T.: Case-based plan adaptation: An analysis and review. Intelligent Systems 23(4), 75–81 (2008)
Xu, K., Munoz-Avila, H.: CaBMA: Case-Based Project Management Assistant. In: Proceedings of The Sixteenth Innovative Applications of Artificial Intelligence Conference (IAAI 2004), pp. 931–936. AAAI Press, Menlo Park (2004)
Lopez Mantaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., Faltings, B., Maher, M.L., Cox, M.T., Forbus, K., Keane, M., Aamodt, A., Watson, I.: Retrieval, reuse, revision and retention in case-based reasoning. The Knowledge Engineering Review 20(03), 215–240 (2005)
Wilke, W., Vollrath, I., Bergmann, R.: Using knowledge containers to model a framework for learning adaptation knowledge. In: European Conference on Machine Learning (MLNet) Workshop Notes – Case-Based Learning: Beyond Classification of Feature Vectors (1997) (published online)
Hanney, K., Keane, M.: The adaptation knowledge bottleneck: How to ease it by learning from cases. In: Leake, D.B., Plaza, E. (eds.) ICCBR 1997. LNCS (LNAI), vol. 1266, pp. 179–192. Springer, Heidelberg (1997)
Craw, S., Wiratunga, N., Rowe, R.C.: Learning adaptation knowledge to improve case-based reasoning. Artificial Intelligence 170(16-17), 1175–1192 (2006)
Badra, F., Cordier, A., Lieber, J.: Opportunistic adaptation knowledge discovery. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650, pp. 60–74. Springer, Heidelberg (2009)
McSherry, D.: Demand-driven discovery of adaptation knowledge. In: IJCAI 1999, pp. 222–227. Morgan Kaufmann, San Francisco (1999)
Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI Communications 7(1), 39–59 (1994)
Minor, M., Schmalen, D., Weidlich, J., Koldehoff, A.: Introspection into an agile workflow engine for long-term processes. In: WETICE 2008. IEEE, Los Alamitos (2008)
Minor, M., Schmalen, D., Kempin, S.: Demonstration of the Agile Workflow Management System Cake II Based on Long-Term Office Workflows. In: CEUR Proceedings of the BPM 2009 Demonstration Track, vol. 489 (2009) (published online)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Minor, M., Bergmann, R., Görg, S., Walter, K. (2010). Towards Case-Based Adaptation of Workflows. In: Bichindaritz, I., Montani, S. (eds) Case-Based Reasoning. Research and Development. ICCBR 2010. Lecture Notes in Computer Science(), vol 6176. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14274-1_31
Download citation
DOI: https://doi.org/10.1007/978-3-642-14274-1_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14273-4
Online ISBN: 978-3-642-14274-1
eBook Packages: Computer ScienceComputer Science (R0)