Abstract
We present new kernelization results for the s -cycle transversal problem for s > 3. In particular, we show a 6k 2 kernel for 4-cycle transversal and a O(k s − 1) kernel for s -cycle transversal when s > 4. We prove the NP-completeness of s -cycle transversal on planar graphs and obtain a 74k kernel for 4-cycle transversal on planar graphs. We also give several kernelization results for a related problem ( ≤ s)-cycle transversal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abu-Khzam, F.N.: Kernelization algorithms for d-hitting set problems. In: WADS, pp. 434–445 (2007)
Alon, N.: Bipartite subgraphs. Combinatorica 16, 301–311 (1996)
Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (meta) kernelization. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science (2009)
Borodin, O.V., Kostochka, A.V., Sheikh, N.N., Yu, G.: M-degrees of quadrangle-free planar graphs. J. Graph Theory 60(1), 80–85 (2009)
Brügmann, D., Komusiewicz, C., Moser, H.: On generating triangle-free graphs. Electronic Notes in Discrete Mathematics 32, 51–58 (2009)
Cherlin, G., Komjáth, P.: There is no universal countable pentagon-free graph. J. Graph Theory 18(4), 337–341 (1994)
Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)
Esperet, L., Montassier, M., Zhu, X.: Adapted list coloring of planar graphs. J. Graph Theory 62(2), 127–138 (2009)
Fernau, H.: Speeding up exact algorithms with high probability. Electronic Notes in Discrete Mathematics 25, 57–59 (2006)
Füredi, Z.: On the number of edges of quadrilateral-free graphs. J. Comb. Theory Ser. B 68(1), 1–6 (1996)
Füredi, Z., Naor, A., Verstraete, J.: On the turan number for the hexagon. Advances in Mathematics 203(2), 476–496 (2006)
Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)
Guo, J., Niedermeier, R.: Linear problem kernels for NP-hard problems on planar graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 375–386. Springer, Heidelberg (2007)
Györi, E., Lemons, N.: Hypergraphs with no odd cycle of given length. Electronic Notes in Discrete Mathematics 34, 359–362 (2009)
Halford, T.R., Grant, A.J., Chugg, K.M.: Which codes have 4-cycle-free tanner graphs? IEEE Transactions on Information Theory 52(9), 4219–4223 (2006)
Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-epsilon. J. Comput. Syst. Sci. 74(3), 335–349 (2008)
Kortsarz, G., Langberg, M., Nutov, Z.: Approximating maximum subgraphs without short cycles. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 118–131. Springer, Heidelberg (2008)
Krivelevich, M.: On a conjecture of tuza about packing and covering of triangles. Discrete Math. 142(1-3), 281–286 (1995)
Veni Madhavan, C.E.: Foundations of Software Technology and Theoretical Computer Science, vol. 181, pp. 381–392. Springer, Heidelberg (1984)
Moser, H.: A problem kernelization for graph packing. In: Nielsen, M., Kucera, A., Miltersen, P.B., Palamidessi, C., Tuma, P., Valencia, F.D. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 401–412. Springer, Heidelberg (2009)
Naor, A., Verstraëte, J.: A note on bipartite graphs without 2k-cycles. Comb. Probab. Comput. 14(5-6), 845–849 (2005)
Thomassen, C.: On the chromatic number of triangle-free graphs of large minimum degree. Combinatorica 22(4), 591–596 (2002)
Thomassen, C.: On the chromatic number of pentagon-free graphs of large minimum degree. Combinatorica 27(2), 241–243 (2007)
Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: STOC, pp. 253–264 (1978)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Xia, G., Zhang, Y. (2010). Kernelization for Cycle Transversal Problems. In: Chen, B. (eds) Algorithmic Aspects in Information and Management. AAIM 2010. Lecture Notes in Computer Science, vol 6124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14355-7_30
Download citation
DOI: https://doi.org/10.1007/978-3-642-14355-7_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14354-0
Online ISBN: 978-3-642-14355-7
eBook Packages: Computer ScienceComputer Science (R0)