Skip to main content

Deformable Image Registration of Follow-Up Breast Magnetic Resonance Images

  • Conference paper
Biomedical Image Registration (WBIR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6204))

Included in the following conference series:

Abstract

A novel method for the deformable image registration of follow-up breast magnetic resonance (MR) images is proposed, aimed at an automatic synchronization of temporal images. To compensate potentially large breast deformations and differences among device coordinates, an initial linear alignment of each individual breast, a combination of both transformations using thin-plate splines, as well as a subsequent linear-elastic registration are performed in sequence. Complementary to algorithmic details, an overview of modality-specific factors influencing follow-up registration accuracy is given. The proposed method was evaluated on 20 clinical datasets annotated with landmarks by an expert radiologist. Despite large variations among the MR images, accuracy of the method was sufficient to allow spatial synchronization, with remaining target registration errors of < 32%. Concluding, potential enhancements to further increase robustness and accuracy are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kuhl, C., Mielcareck, P., Klaschik, S., Leutner, C., Wardelmann, E., Gieseke, J., Schild, H.: Dynamic Breast MR Imaging: Are Signal Intensity Time Course Data Useful for Differential Diagnosis of Enhancing Lesions? Radiology 211(1), 101–110 (1999)

    Google Scholar 

  2. Kuhl, C., Schrading, S., Leutner, C., Morakkabati-Spitz, N., Wardelmann, E., Fimmers, R., Kuhn, W., Schild, H.: Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. Journal of Clinical Oncology 23(33), 8469–8476 (2005)

    Article  Google Scholar 

  3. Viehweg, P., Rotter, K., Laniado, M., Lampe, D., Buchmann, J., Kölbl, H., Heywang-Köbrunner, S.: MR imaging of the contralateral breast in patients after breast-conserving therapy. European Radiology 14(3), 402–408 (2004)

    Article  Google Scholar 

  4. Lehman, C., Gatsonis, C., Kuhl, C., Hendrick, R., Pisano, E., Hanna, L., Peacock, S., Smazal, S., Maki, D., Julian, T., et al.: MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. The New England Journal of Medicine 356(13), 1295–1303 (2007)

    Article  Google Scholar 

  5. Montgomery, D., Krupa, K., Cooke, T.: Alternative methods of follow up in breast cancer: a systematic review of the literature. British Journal of Cancer 96(11), 1625 (2007)

    Article  Google Scholar 

  6. Varas, X., Leborgne, J., Leborgne, F., Mezzera, J., Jaumandreu, S., Leborgne, F.: Revisiting the mammographic follow-up of BI-RADS category 3 lesions. American Journal of Roentgenology 179(3), 691–695 (2002)

    Google Scholar 

  7. Sickles, E.: Periodic mammographic follow-up of probably benign lesions: results in 3,184 consecutive cases. Radiology 179(2), 463–468 (1991)

    Google Scholar 

  8. Chittineni, R., Su, M., Nalcioglu, O.: Breast Delineation using Active Contours to Facilitate Coregistration of Serial MRI Studies for Therapy Response Evaluation. In: IEEE International Conference on Image Processing, vol. 6, pp. 261–264 (2007)

    Google Scholar 

  9. Li, X., Dawant, B., Welch, E., Chakravarthy, A., Freehardt, D., Mayer, I., Kelley, M., Meszoely, I., Gore, J., Yankeelov, T.: A nonrigid registration algorithm for longitudinal breast MR images and the analysis of breast tumor response. Magnetic Resonance Imaging 27(9), 1258–1270 (2009)

    Article  Google Scholar 

  10. Boehler, T., Bick, U., Hahn, H.: Assessment of image registration for follow-up MR mammography. European Radiology Supplements 19(4), 961–963 (2009)

    Google Scholar 

  11. Koenig, M., Kohle, S., Peitgen, H.O.: Automatic Cropping of Breast Regions for Registration in MR Mammography. In: Proceedings of SPIE of Medical Imaging 2005, pp. 1563–1570 (2005)

    Google Scholar 

  12. Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press, New York (2004)

    MATH  Google Scholar 

  13. Thevenaz, P., Ruttimann, U., Unser, M.: A pyramid approach to subpixel registration based on intensity. IEEE Transactions on Image Processing 7(1), 27–41 (1998)

    Article  Google Scholar 

  14. Armijo, L.: Minimization of functions having Lipschitz continuous first partial derivatives. Pacific Journal of Mathematics 16(1), 1–3 (1966)

    MATH  MathSciNet  Google Scholar 

  15. Gill, P., Murray, W., Wright, M.: Practical optimization. Academic Press, London (1981)

    MATH  Google Scholar 

  16. Bookstein, F.: Principal Warps: Thin-Plate Splines and the Decomposition of Deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(6), 567–585 (1989)

    Article  MATH  Google Scholar 

  17. Commowick, O., Arsigny, V., Isambert, A., Costa, J., Dhermain, F., Bidault, F., Bondiau, P., Ayache, N., Malandain, G.: An efficient locally affine framework for the smooth registration of anatomical structures. Medical Image Analysis 12(4), 427–441 (2008)

    Article  Google Scholar 

  18. Rohr, K.: Landmark-based image analysis: using geometric and intensity models. Kluwer Academic Pub., Dordrecht (2001)

    MATH  Google Scholar 

  19. Thirion, J.P.: Image Matching as a Diffusion Process: An Analogy with Maxwell’s Demons. Medical Image Analysis 2(3), 243–260 (1998)

    Article  Google Scholar 

  20. Pennec, X., Cachier, P., Ayache, N.: Understanding the Demon’s Algorithm: 3D Non-Rigid Registration by Gradient Descent. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 597–605. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  21. Gramkow, C., Bro-Nielsen, M.: Comparison of Three Filters in the Solution of the Navier-Stokes Equation in Registration. In: Proceedings of the Scandinavian Conference on Image Analysis, pp. 795–802 (1997)

    Google Scholar 

  22. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Non-parametric diffeomorphic image registration with the demons algorithm. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 319–326. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Hajnal, J., Hawkes, D., Hill, D.: Medical image registration. CRC Press, Boca Raton (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boehler, T., Schilling, K., Bick, U., Hahn, H.K. (2010). Deformable Image Registration of Follow-Up Breast Magnetic Resonance Images. In: Fischer, B., Dawant, B.M., Lorenz, C. (eds) Biomedical Image Registration. WBIR 2010. Lecture Notes in Computer Science, vol 6204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14366-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14366-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14365-6

  • Online ISBN: 978-3-642-14366-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics