Abstract
We propose Mooney-Rivlin (MR) nonlinear elasticity of hyperelastic materials and numerical algorithms for image registration in the presence of landmarks and large deformation. An auxiliary variable is introduced to remove the nonlinearity in the derivatives of Euler-Lagrange equations. Comparing the MR elasticity model with the Saint Venant-Kirchhoff elasticity model (SVK), the results show that the MR model gives better matching in fewer iterations. To accelerate the slow convergence due to the lack of smoothness of the L 2 gradient, we construct a Sobolev H 1 gradient descent method [13] and take advantage of the smoothing quality of the Sobolev operator \((Id-\triangle)^{-1}\). The MR model with Sobolev H 1 gradient descent (SGMR) improves both matching criterion and computational time substantially. We further apply the L 2 and Sobolev gradient to landmark registration for multi-modal mouse brain data, and observe faster convergence and better landmark matching for the MR model with Sobolev H 1 gradient descent.
Work funded by the National Institutes of Health through the NIH Roadmap for Medical Research, Grant U54 RR021813 entitled Center for Computational Biology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beg, F., Miller, M., Trouvé, A., Younes, L.: Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms. IJCV 61(2), 139–157 (2005)
Christensen, G., Rabbitt, R., Miller, M.: Deformable Templates Using Large Deformation Kinematics. IEEE TIP 5(10), 1435–1447 (1996)
Droske, M., Rumpf, M.: A Variational Approach to Non-Rigid Morphological Registration. SIAM Applied Mathematics 64(2), 668–687 (2004)
Faugeras, O., Hermosillo, G.: Well-Posedness of Two Nonrigid Multimodal Image Registration Methods. SIAM Applied Mathematics 64(5), 1550–1587 (2004)
Fusco, N., Leone, C., Verde, A., March, R.: A Lower Semi-Continuity Result for Polyconvex Functionals in SBV. Proceedings of the Royal Society of Edinburgh 136A, 321–336 (2006)
Gil, A.: FEM for Prestressed Saint Venant-Kirchhoff Hyperelastic Membranes. In: Textile Composite and Inflatable Structures, pp. 123–142. Springer, Heidelberg (2005)
Johnson, H.J., Christensen, G.E.: Consistent Landmark and Intensity-Based Image Registration. IEEE TMI 21(5), 450–461 (2002)
Lee, E., Jacobs, R., Dinov, I., Leow, A., Toga, A.: Standard Atlas Space for C57BL/6J Neonatal Mouse Brain. Anat. Embryol (Berl) 210(4), 245–263 (2005)
Lin, T., Le Guyader, C., Lee, E.-F., Dinov, I., Thompson, P.M., Toga, A.W., Vese, L.A.: Gene to mouse atlas registration using a landmark-based nonlinear elasticity smoother. In: SPIE MI, Image Processing, vol. 7259 (2009)
Miller, M.I., Trouvé, A., Younes, L.: On the Metrics and Euler-Lagrange Equations of Computational Anatomy. Annu. Rev. B. Eng. 4, 375–405 (2002)
Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press, Oxford (2004)
Negrón Marrer, P.V.: A Numerical Method for Detecting Singular Minimizers of Multidimensional Problems in Nonlinear Elasticity. Numerische Mathematik 58(1), 135–144 (1990)
Neuberger, J.: Sobolev Gradients and Differential Equations. LNM, vol. 1670. Springer, Heidelberg (1997)
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Heidelberg (1999)
Peckar, W., Schnörr, C., Rohr, K., Stiehl, H.S.: Parameter-Free Elastic Deformation Approach for 2D and 3D Registration Using Prescribed Displacements. Journal of Mathematical Imaging and Vision 10(2), 143–162 (1999)
Pedregal, P.: Variational Methods in Nonlinear Elasticity. SIAM, Philadelphia (2000)
Picinbono, G., Delingette, H., Ayache, N.: Non-Linear Anisotropic Elasticity for Real-Time Surgery Simulation. Graphical Models 65, 305–321 (2003)
Rabbitt, R.D., Weiss, J.A., Christensen, G.E., Miller, M.I.: Mapping of Hyperelastic Deformable Templates Using the Finite Element Method. In: Proceedings SPIE, vol. 2573, pp. 252–265 (1995)
Raoult, A.: Non-Polyconvexity of the Stored Energy Function of A Saint Venant-Kirchhoff Material. Application of Mathematics 31(6), 417–419 (1986)
Renka, R.: Constructing Fair Curves and Surfaces with a Sobolev Gradient Method. Computer Aided Geometric Design 21, 137–149 (2004)
Sorzano, C.O.S., Thévenaz, P., Unser, M.: Elastic Registration of Biological Images Using Vector-Spline Regularization. IEEE T. Biom. Eng. 52(4), 652–663 (2005)
Tagare, H., Groisser, D., Skrinjar, O.: A geometric theory of symmetric registration. In: IEEE CVPRW 2006 (2006)
Yanovsky, I., Osher, S., Thompson, P., Leow, A.: Log-Unbiased Large-Deformation Image Registration. VISAPP 1, 272–279 (2007)
Yanovsky, I., Osher, S., Thompson, P., Leow, A.: Topology Preserving Log-Unbiased Nonlinear Image Registration: Theory and Implementation. CVPR, 1–8 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lin, T., Dinov, I., Toga, A., Vese, L. (2010). Nonlinear Elasticity Registration and Sobolev Gradients. In: Fischer, B., Dawant, B.M., Lorenz, C. (eds) Biomedical Image Registration. WBIR 2010. Lecture Notes in Computer Science, vol 6204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14366-3_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-14366-3_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14365-6
Online ISBN: 978-3-642-14366-3
eBook Packages: Computer ScienceComputer Science (R0)