Skip to main content

Simulations of the Electrical Activity in the Heart with Graphic Processing Units

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2009)

Abstract

The modeling of the electrical activity of the heart is of great medical and scientific interest, because it provides a way to get a better understanding of the related biophysical phenomena, allows the development of new techniques for diagnoses and serves as a platform for drug tests. The cardiac electrophysiology may be simulated by solving a partial differential equation (PDE) coupled to a system of ordinary differential equations (ODEs) describing the electrical behavior of the cell membrane. The numerical solution is, however, computationally demanding because of the fine temporal and spatial sampling required. The demand for real time high definition 3D graphics made the new graphic processing units (GPUs) a highly parallel, multithreaded, many-core processor with tremendous computational horsepower. It makes the use of GPUs a promising alternative to simulate the electrical activity in the heart. The aim of this work is to study the performance of the use of GPUs to solve the equations underlying the electrical activity in a simple cardiac tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Plank, G., Zhou, L., Greenstein, J.L., Cortassa, S., Winslow, R.L., O’Rourke, B., Trayanova, N.A.: From mitochondrial ion channels to arrhythmias in the heart: computational techniques to bridge the spatio-temporal scales. Philos. Transact. A Math. Phys. Eng. Sci. 366, 3381–3409 (2008)

    Article  MathSciNet  Google Scholar 

  2. Plonsey, R., Barr, R.C.: Mathematical modeling of electrical activity of the heart. Electrocardiol. 20(3), 219–226 (1987)

    Article  Google Scholar 

  3. Maclachlan, M.C., Sundnes, J., Spiteri, R.J.: A comparison of non-standard solvers for odes describing cellular reactions in the heart. Comput. Methods Biomech. Biomed. Engin. 10, 317–326 (2007)

    Article  Google Scholar 

  4. Geselowitz, D.B., Miller, W.T.: A bidomain model for anisotropic cardiac muscle. Ann. Biomed. Eng. 11, 191–206 (1983)

    Article  Google Scholar 

  5. Vigmond, E.J., Aguel, F., Trayanova, N.: Computational techniques for solving the bidomain equations in three dimensions. IEEE Trans. Biomed. Eng. 49(11), 1260–1269 (2002)

    Article  Google Scholar 

  6. Santos, R.W., Plank, G., Bauer, S., Vigmond, E.J.: Parallel multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 51(11), 1960–1968 (2004)

    Article  Google Scholar 

  7. Vigmond, E.J., Santos, R.W., Prassl, A.J., Deo, M., Plank, G.: Solvers for the cardiac bidomain equations. Prog. Biophys. Mol. Biol. 96(1-3), 3–18 (2008)

    Article  Google Scholar 

  8. Plank, G., Liebmann, M., Santos, R.W., Vigmond, E.J., Haase, G.: Algebraic multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 54(4), 585–596 (2007)

    Article  Google Scholar 

  9. Sundnes, J., Nielsen, B.F., Mardal, K.A., Cai, X., Lines, G.T., Tveito, A.: On the computational complexity of the bidomain and the monodomain models of electrophysiology. Ann. of Bio. Eng. 34(7), 1088–1097 (2006)

    Article  Google Scholar 

  10. Clark, J., Plonsey, R.: A mathematical evaluation of the core conductor model. Biophys J. 6(1), 95–112 (1966)

    Article  Google Scholar 

  11. Potse, M., Dubé, B., Vinet, A., Cardinal, R.: A comparison of monodomain and bidomain propagation models for the human heart. IEEE Trans. Biomed. Eng. 53, 2425–2435 (2006)

    Article  Google Scholar 

  12. Sundnes, J., Lines, G., Tveito, A.: Efficient solution of ordinary differential equations modeling electrical activity in cardiac cells. Mathematical Biosciences 172, 55–72 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. NVIDIA Corporation: NVIDIA CUDA Programming Guide (2009)

    Google Scholar 

  14. Luo, C., Rudy, Y.: A Dynamic Model of the Cardiac Ventricular Action Potential. Circulation Research 74(6), 1071–1096 (1994)

    Google Scholar 

  15. Sundnes, J., Lines, G.T., Tveito, A.: An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. Mathematical Biosciences 194, 233–248 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Company (1996)

    Google Scholar 

  17. Roth, B.J.: Electrical conductivity values used with the bidomain model of cardiac tissue. IEEE Trans. Biomed. Eng. 44(4), 326–328 (1997)

    Article  Google Scholar 

  18. Buatois, L., Caumon, G., Lévy, B.: Concurrent number cruncher: An efficient sparse linear solver on the GPU. In: Perrott, R., Chapman, B.M., Subhlok, J., de Mello, R.F., Yang, L.T. (eds.) HPCC 2007. LNCS, vol. 4782, pp. 358–371. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rocha, B.M., Campos, F.O., Plank, G., dos Santos, R.W., Liebmann, M., Haase, G. (2010). Simulations of the Electrical Activity in the Heart with Graphic Processing Units. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2009. Lecture Notes in Computer Science, vol 6067. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14390-8_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14390-8_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14389-2

  • Online ISBN: 978-3-642-14390-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics