Skip to main content

An Orthogonal Matching Pursuit Algorithm for Image Denoising on the Cell Broadband Engine

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6067))

Abstract

Patch-based approaches in imaging require heavy computations on many small sub-blocks of images but are easily parallelizable since usually different sub-blocks can be treated independently. In order to make these approaches useful in practical applications efficient algorithms and implementations are required. Newer architectures like the Cell Broadband Engine Architecture (CBEA) make it even possible to come close to real-time performance for moderate image sizes. In this article we present performance results for image denoising on the CBEA. The image denoising is done by finding sparse representations of signals from a given overcomplete dictionary and assuming that noise cannot be represented sparsely. We compare our results with a standard multicore implementation and show the gain of the CBEA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Starck, J., Elad, M., Donoho, D.: Image decomposition via the combination of sparse representations and a variational approach. IEEE Transactions on Image Processing 14(10), 1570–1582 (2005)

    Article  MathSciNet  Google Scholar 

  2. Tropp, J.: Topics in Sparse Approximation. PhD thesis, The University of Texas at Austin (2004)

    Google Scholar 

  3. Aharon, M., Elad, M., Bruckstein, A.: On the uniqueness of overcomplete dictionaries, and a practical way to retrieve them. Linear Algebra and Its Applications 416(1), 48–67 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Borsdorf, A., Raupach, R., Hornegger, J.: Wavelet based Noise Reduction by Identification of Correlation. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 21–30. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Borsdorf, A., Raupach, R., Hornegger, J.: Separate CT-Reconstruction for 3D Wavelet Based Noise Reduction Using Correlation Analysis. In: Yu, B. (ed.) IEEE NSS/MIC Conference Record., pp. 2633–2638 (2007)

    Google Scholar 

  6. Mayer, M., Borsdorf, A., Köstler, H., Hornegger, J., Rüde, U.: Nonlinear Diffusion vs. Wavelet Based Noise Reduction in CT Using Correlation Analysis. In: Lensch, H., Rosenhahn, B., Seidel, H.P., Slusallek, P., Weickert, J. (eds.) Vision, Modeling, and Visualization 2007, pp. 223–232 (2007)

    Google Scholar 

  7. Bartuschat, D., Borsdorf, A., Köstler, H., Rubinstein, R., Stürmer, M.: A parallel K-SVD implementation for CT image denoising. Technical report, Department of Computer Science 10 (System Simulation), Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (2009)

    Google Scholar 

  8. Köstler, H.: A Multigrid Framework for Variational Approaches in Medical Image Processing and Computer Vision. Verlag Dr. Hut, München (2008)

    Google Scholar 

  9. Davis, G., Mallat, S., Avellaneda, M.: Adaptive greedy approximations. Constructive Approximation 13(1), 57–98 (1997)

    Google Scholar 

  10. Rubinstein, R., Zibulevsky, M., Elad, M.: Efficient Implementation of the K-SVD Algorithm and the Batch-OMP Method

    Google Scholar 

  11. Donoho, D.L., Elad, M.: Optimally sparse representations in general (non-orthogonal) dictionaries via l 1 minimization. Proc. Nat. Acad. Sci. 100, 2197–2202 (2002)

    Article  MathSciNet  Google Scholar 

  12. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Applied Mathematical Sciences, 2nd edn., vol. 147. Springer, Heidelberg (2006)

    Google Scholar 

  13. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  14. IBM Corporation Rochester MN, USA: Programming Tutorial, Software Development Kit for Multicore Acceleration, Version 3.0 (2007)

    Google Scholar 

  15. Gschwind, M.: The Cell Broadband Engine: Exploiting Multiple Levels of Parallelism in a Chip Multiprocessor. International Journal of Parallel Programming 35(3), 233–262 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bartuschat, D., Stürmer, M., Köstler, H. (2010). An Orthogonal Matching Pursuit Algorithm for Image Denoising on the Cell Broadband Engine. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2009. Lecture Notes in Computer Science, vol 6067. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14390-8_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14390-8_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14389-2

  • Online ISBN: 978-3-642-14390-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics