Skip to main content

Quantile Regression Model for Impact Toughness Estimation

  • Conference paper
Advances in Data Mining. Applications and Theoretical Aspects (ICDM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6171))

Included in the following conference series:

Abstract

The purpose of this study was to develop a product design model for estimating the impact toughness of low-alloy steel plates. The rejection probability in a Charpy-V test (CVT) is predicted with process variables and chemical composition. The proposed method is suitable for the whole production line of a steel plate mill, including all grades of steel in production. The quantile regression model was compared to the joint model of mean and dispersion and the constant variance model. The quantile regression model proved out to be the most effective method for modelling a highly complicated property at this extent.

Next, the developed model will be implemented into a graphical simulation tool that is in daily use in the product planning department and already contains some other mechanical property models. The model will guide designers in predicting the related risk of rejection and in producing desired properties in the product at lower cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tóth, L., Rossmanith, H.P., Siewert, T.: Historical background and development of the charpy test. In: François, D., Pineau, A. (eds.) From Charpy to Present Impact Testing. Elsevier Science Ltd., UK (2002)

    Google Scholar 

  2. Wallin, K., Nevasmaa, P., Planman, T., Valo, M.: Evaluation of the charpy-v test from a quality control test to a materials evaluation tool for structural integrity assessment. In: François, D., Pineau, A. (eds.) From Charpy to Present Impact Testing. Elsevier Science Ltd., UK (2002)

    Google Scholar 

  3. Lindroos, Sulonen, Veistinen: Uudistettu Miekk-ojan metallioppi. Otava, Finland (1986) (In Finnish)

    Google Scholar 

  4. Cawley, G., Janacek, G., Haylock, M., Dorling, S.: Predictive uncertainty in environmental modelling. Neural Networks 20, 537–549 (2007)

    Article  MATH  Google Scholar 

  5. Haušild, P.: The influence of ductile tearing on fracture energy in the ductile-to-brittle transition temperature range. Materials Science and Engineering A335, 164–174 (2002)

    Article  Google Scholar 

  6. Todinov, M.: Uncertainty and risk associated with the Charpy impact energy of multi-run welds. Nuclear Engineering and Design 231, 27–38 (2004)

    Article  Google Scholar 

  7. Bhadeshia, H.: Neural networks in materials science. ISIJ International 39(10), 966–979 (1999)

    Article  Google Scholar 

  8. Malinov, S., Sha, W., McKeown, J.: Modelling the correlation between processing parameters and properties in titaniumalloys using artificial neural network. ComputationalMaterials Science 21, 375–394 (2001)

    Google Scholar 

  9. Golodnikov, A., Macheret, Y., Trindade, A., Uryasev, S., Zrazhevsky, G.: Statistical modeling of composition and processing parameters for alloy development. Modelling and Simulation in Materials Science and Engineering 13(4), 633–644 (2005)

    Article  Google Scholar 

  10. Koenker, R.: Quantile Regression. Cambridge University Press, USA (2005)

    MATH  Google Scholar 

  11. Yu, K., Lu, Z., Stander, J.: Quantile regression: Applications and current research areas. The Statistician 52(3), 331–350 (2003)

    MathSciNet  Google Scholar 

  12. Engel, J.: Modelling variation in industrial experiments. Applied Statistics 41(3), 579–593 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Carroll, R., Ruppert, D.: Transformation and Weighting in Regression. Chapman and Hall, USA (1988)

    MATH  Google Scholar 

  14. Smyth, G., Huele, A., Verbyla, A.: Exact and approximate REML for heteroscedastic regression. Statistical Modelling 1(3), 161–175 (2001)

    Article  MATH  Google Scholar 

  15. Juutilainen, I.: Modelling of Conditional Variance and Uncertainty Using Industrial Process Data. PhD thesis, University of Oulu, Finland (2006)

    Google Scholar 

  16. Juutilainen, I., Röning, J.: Modelling the probability of rejection in a qualification test based on process data. In: Proc. 16th Symposium of IASC (COMPSTAT 2004), Prague, Czech Republic, August 23-27, pp. 1271–1278 (2004)

    Google Scholar 

  17. Koenker, R., Hallock, K.: Quantile regression. Journal of Economic Perspectives 15(4), 143–156 (2001)

    Article  Google Scholar 

  18. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Inc., USA (1995)

    Google Scholar 

  19. Svozil, D., Kvasnička, V., Pospichal, J.: Introduction to multi-layer feed-forward neural networks. Chemometrics and Intelligent Laboratory Systems 39, 43–62 (1997)

    Article  Google Scholar 

  20. Harvey, A.: Regression models with multiplicative heteroscedasticity. Econometrica 44(3), 461–465 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  21. Saerens, M.: Building cost functions minimizing to some summary statistics. IEEE Transactions on Neural Networks 11(6), 1263–1271 (2000)

    Article  Google Scholar 

  22. Dorling, S., Foxall, R., Mandic, D., Cawley, G.: Maximum likelihood cost functions for neural network models of air quality data. Atmospheric Environment 37, 3435–3443 (2003)

    Article  Google Scholar 

  23. Laurinen, P., Tuovinen, L., Röning, J.: Smart archive: A component-based data mining application framework. In: Proc. 5th International Conference on Intelligent Systems Design and Applications, Wroclaw, Poland, September 8-10, pp. 20–26 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tamminen, S., Juutilainen, I., Röning, J. (2010). Quantile Regression Model for Impact Toughness Estimation. In: Perner, P. (eds) Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2010. Lecture Notes in Computer Science(), vol 6171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14400-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14400-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14399-1

  • Online ISBN: 978-3-642-14400-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics