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Abstract. Aircraft engines are designed to be used during several tens
of years. Ensuring a proper operation of engines over their lifetime is
therefore an important and difficult task. The maintenance can be im-
proved if efficients procedures for the understanding of data flows pro-
duced by sensors for monitoring purposes are implemented. This paper
details such a procedure aiming at visualizing in a meaningful way suc-
cessive data measured on aircraft engines. The core of the procedure is
based on Self-Organizing Maps (SOM) which are used to visualize the
evolution of the data measured on the engines. Rough measurements can
not be directly used as inputs, because they are influenced by external
conditions. A preprocessing procedure is set up to extract meaningful
information and remove uninteresting variations due to change of en-
vironmental conditions. The proposed procedure contains three main
modules to tackle these difficulties: environmental conditions normaliza-
tion (ECN), change detection and adaptive signal modeling (CD) and
finally visualization with Self-Organizing Maps (SOM). The architecture
of the procedure and of modules are described in details in this paper
and results on real data are also supplied.

Key words: Health monitoring, Self-Organizing Maps, Changes detec-
tion

1 Introduction

During the flights, some on-board sensors measure many parameters related to
the behavior (and therefore the health) of aircraft engines. These parameters are
recorded and used at short and long terms for immediate action and alarm gen-
eration, respectively. In this work, we are interested in the long-term monitoring
of aircraft engines and we want to use these measurements to detect any devi-
ations from a “normal” behavior, to anticipate possible faults and to facilitate
the maintenance of aircraft engines.
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This work presents a tool that can help experts, in addition to their tradi-
tional tools based on quantitative inspection of some relevant variables, to easily
visualize the evolution of the engine health. This evolution will be characterized
by a trajectory on a two-dimensional Self-Organizing Map. Abnormal aging and
fault will result in deviations with respect to normal conditions.

The choice of Self-Organizing Maps is motivated by several points:

– SOMs are useful tools for visualizing high-dimensional data onto a low-
dimensional grid;

– SOMs have already been applied with success for fault detection and predic-
tion in plants and machines (see [1] for example).

The article is organized as follow. First, in Section 2, the data and the nota-
tions used throughout the paper are presented. The methodology and the global
architecture of the proposed procedure are described in Section 3. Each step is
defined and results on real data are given in Section 4. Finally, in Section 5,
perspectives on trajectory analysis are supplied.

2 Data

Measurements are collected on a set of I engines. On each engine i ∈ {1, . . . , I},
ni measurements are performed successively flight after flight; there is thus no
guarantee that the time intervals between two measures are approximately equal.
Each observation is denoted by Zij , where i ∈ {1, . . . , I} is the engine number
and j ∈ {1, . . . , ni} is the flight number.

Each vector Zij contains two kinds of variables: those which are strictly
related to the behavior of the engine (fuel consumption, static pressure, ...), and
those which are related to the environment (temperature, altitude, ...). Let the
p engine variables be denoted by Y 1

ij , . . . , Y
p
ij and the q environmental variables

by X1
ij , . . . , X

q
ij . Each observation is therefore a (p + q)-vector Zij , where Zij =

[Yij , Xij ] =
[

Y 1
ij , . . . , Y

p
ij , X

1
ij , . . . , X

q
ij

]

. The variables at disposal are listed in
Table 1. There are p = 5 engine variables and q = 15 environmental variables.
The dataset contains measurements for approximately one year of flights and
I = 91 engines, that leads to a global dataset with

∑91
i=1 ni = 59407 (p + q)-

dimensional observations.

3 Methodology

The goal is to build the trajectories of all the engines, that is to project the
successive observations of each engine on a Self-Organizing Map, in order to
follow the evolution and to eventually detect some “abnormal” deviation.

It is not valuable to use the rough engine measurements: they are inappro-
priate for direct analysis by Self-Organizing Maps, because they are strongly
dependent on environment conditions and also on the characteristics of the en-
gine (its past, its age, ...).
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Name Description Type Binary

aid aircraft id
eid engine id
fdt flight date

X1

ij temp temperature environment
X2

ij nacelletemp nacelle temperature environment
X3

ij altitude aircraft altitude environment
X4

ij wingaice wings anti-ice environment X

X5

ij nacelleaice nacelle anti-ice environment X

X6

ij bleedvalve bleed valve position environment X

X7

ij isolationleft valve position environment X

X8

ij vbv variable bleed valve position environment
X9

ij vsv variable stator valve position environment
X10

ij hptclear high pressure turbine setpoint environment
X11

ij lptclear low pressure turbine setpoint environment
X12

ij rotorclear rotor setpoint environment
X13

ij ecs air cooling system environment
X14

ij fanspeedi N1 environment
X15

ij mach aircraft speed environment

Y 1

ij corespeed N2 engine
Y 2

ij fuelflow fuel consumption engine
Y 3

ij ps3 static pressure engine
Y 4

ij t3 temperature plan 3 engine
Y 5

ij egt exhaust gas temperature engine

Table 1. Variables names, descriptions and type.

The first idea is to use a linear regression for each engine variable: the envi-
ronmental variables (real-valued variables) and the number of the engine (cat-
egorical variable) are the predictors and the residuals of these regressions can
be used as standardized variables (see [2] for details). For each engine variable
r = 1, . . . , p, the regression model can be written as:

Y r
ij = µr + αr

i + λr
1X

1
ij + . . . + λr

qX
q
ij + ǫr

ij (1)

where αr
i is the engine effect on the rth variable, λr

1, . . . , λ
r
q are the regression

coefficients for the rth variable, µr is the intercept and the error term ǫr
ij is the

residual.

Figure 1 presents for example the rough measurements of the corespeed fea-
ture as a function of time (for engine 6) and the residuals computed by model (1).
The rough measurements seem almost time independent on this figure, whereas
the residuals exhibit an abrupt change which is linked to a specific event in the
life of this engine. This simple model is therefore sufficient to bring to light inter-
esting aspects of the evolution of this engine. However, the signals may contain
ruptures, making the use of a single regression model hazardous.
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Fig. 1. (a) Rough measurements of the corespeed variable as a function of time for
engine 6, (b) residuals of the same variable and for the same engine using a simple
linear model with the environmental variables and the engine indicator as predictors
(see Table 1).

The main idea of this work is to replace model (1) by a new procedure which
deals with the temporal behavior of the signals. The goal is therefore to detect
the ruptures and to use different models after each rupture.

This new procedure is composed of two modules. The first module (Envi-
ronmental Conditions Normalization, ECN) aims at removing the effects of the
environmental variables to provide standardized variables, independent of the
flight conditions. It is described in section 4.1

The second module uses an on-line change detection algorithm to find the
above mentioned abrupt changes, and introduces a piecewise regression model.
The detection of the change points is done in a multi-dimensional setting taking
as input all the normalized engine variables supplied by the ECN module. The
Change Detection (CD) module is presented in Section 4.2.

Finally, as a result of these first two steps, the “cleaned” database can be
used as input to a Self-Organizing Map with a “proper” distance for trajecto-
ries visualization. The third module (SOM) provides the “map” on which the
trajectories will be drawn.

This three-steps procedure is summarized in Figure 2.

4 Description of the three modules

4.1 Environmental Conditions Normalization - ECN

The first module aims at removing the effects of the environmental variables.
For that purpose, one regression model has to be fitted for each of the p

engine variables. As the relationship between environmental and engine vari-
ables is complex and definitively not linear, the environmental variables can be
supplemented by some non-linear transformations of the latter, increasing the
number of explanatory variables. Interactions (all the possible products between
two environmental variables), squares, cubes and fourth powers of the non binary
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Fig. 2. Global architecture of the health monitoring tools.

environmental variables are considered. The number q of predictors in the model
is therefore a priori equal to (11 + 4) ∗ (11 + 4 − 1)/2 = 105 for the interactions
variables and 11 ∗ 4 + 4 = 48 for the power of the continuous variable and the
binary variables leading to a total of q = 153 predictors.

This number is certainly too large and some of them are clearly irrelevant
due to the systematic procedure used to build the non-linear transforms of en-
vironmental variables.

A LASSO criterion [3] is therefore used to estimate the regression parameters
and to select a subset of significant predictors. This criterion can be written using
the notations from Section 2 for one engine variable Y r, r ∈ {1, . . . , p} as :

βr = arg min
βr∈Rq

I,ni
∑

i,j=1

(

Y r
ij −

q
∑

l=1

βr
l X l

ij

)2

,

q
∑

l=1

|βr
l | < Cr (2)

The regression coefficients are penalized by a L1 penalty which forces some of
them to be null for a well chosen value of Cr. The LARS algorithm [3] is used to
estimate all the solutions of the optimization problem (2) for all possible values
of Cr. The optimal value of Cr with respect to the prediction error estimated
by cross-validation (with 20 blocs) is finally selected. The number of selected
predictors and the coefficient of determination R2 are listed in Table 2 for all
engine variables. Engine variables are well explained by the proposed models as
attested by the high value of the coefficients of determination.

corespeed fuelflow ps3 t3 egt

nb vars 25 43 31 30 41
R2

obs 0.9875 0.9881 0.9773 0.9636 0.8755

Table 2. Number of selected predictors and coefficients of determination for all engine
variables.
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A qualitative inspection of the model results was also carried out with the
help of engine experts. The regularization path plot (as shown in Figure 3) is very
interesting from the point of view of the experts, because it can be compared
with their previous knowledge. Such a curve clearly highlights which are the
more relevant predictors and they appear to be in very good adequateness with
the physical knowledge on the system.

fanspeedi
altitude

fanspeedi*altitude

optimal solution

fuelflow

Fig. 3. Regularization path for the fuelflow variable: regression coefficients evolution
with respect to Cr. The more significant explanatory variables are given and the best
solution with respect to cross-validation is depicted by a vertical line.

In summary, the first preprocessing module (ECN) provides 5 standardized
engine variables, which are independent of environmental conditions. These new
variables still contain some significant aspects such as linear trends and abrupt
changes at specific dates. We therefore propose to use an on-line Change Detec-
tion algorithm (CD) together with an adaptive linear model to fit the data.

4.2 Change Detection - CD

To take into account the two types of variation (linear trend and abrupt changes),
we implement an algorithm based on the ideas from [4] and [5]. The solution is
based on the joint use of an on-line change detection algorithm to detect abrupt
changes and of a bank of recursive least squares (RLS) algorithms to estimate
the slow variations of the signals. The algorithm works on-line in order to allows
projecting new measurements on the map as soon as new data are available.

The method can be described as follows :
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1) One RLS algorithm is used for each one of the p engine variable to recur-
sively fit a linear model. At each date l, for each standardized engine variable r,
for each engine i, one has to minimize the following criterion :

(αr
l , β

r
l ) = arg min

α∈R,β∈R

J({Y r
i1, . . . Y r

il}, α, β) (3)

= arg min
α∈R,β∈R

l
∑

j=1

λ(l−i)(Y r
ij − (β.j + α))2 (4)

The estimates αr
l and βr

l are respectively the intercept and the slope of the linear
relationship. These estimates are then used to remove the slow variations of the
signals by defining the quantity:

εr
l = Y r

il − (βr
l .l + αr

l ) (5)

2) These values are then computed for each standardized engine variable
and concatenated in a vector εl = [ε1

l , . . . , ε
p
l ], which is then used in a multi-

dimensional Generalized Likelihood Ratio (GLR) algorithm [6] to detect the
abrupt changes of the signals. The GLR algorithm is a sequential test procedure
based on the following model :

εk ∼ Np(θ(k), Σ), ∀k > 0,

with :

θ(k) =

{

θ ∈ Θ0 si k < t0,

θ ∈ Θ1 si k ≥ t0,
(6)

where t0 is the unknown change time and Θ0 and Θ1 are two non-overlapping
subsets. They are defined by two hyper-spheres centered on θ0 as shown in Figure
4. In such a case, Θ0 and Θ1 are defined by:

Fig. 4. Subsets for θ1 and θ0
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Θ0 =
{

θ : (θ − θ0)
tΣ−1(θ − θ0) ≤ a2

}

(7)

Θ1 =
{

θ : (θ − θ0)
tΣ−1(θ − θ0) ≥ b2

}

, (8)

with a ≤ b. The sequential test problem is then solved by defining the alarm date
ta to be the first time where the test statistic gk is above a specified threshold
h :

ta = min{k ≥ 1 : gk ≥ h}, (9)

with the following definition of the test statistic :

gk = max
1≤j≤k

ln
supθ:||θ−θ0||Σ≥b

∏k

i=j pθ(εi)

supθ:||θ−θ0||Σ≤a

∏k

i=j pθ(εi)
. (10)

where pθ(.) denotes a density of a multivariate Gaussian of mean θ and variance
Σ.

With Sk
j given by:

Sk
j = ln

supθ:||θ−θ0||Σ≥b

∏k

i=j pθ(εi)

supθ:||θ−θ0||Σ≤a

∏k

i=j pθ(εi)
, (11)

the maximization problem (10) has an analytical solution in the Gaussian
case and Sk

j takes the following value :

Sk
j =











− (k−j+1)
2 (χk

j − b)2, if χk
j < a,

(k−j+1)
2

(

−(χk
j − b)2 + (χk

j − a)2
)

, if a ≤ χk
j ≤ b,

+ (k−j+1)
2 (χk

j − a)2, if χk
j ≥ b,

(12)

with χk
j =

√

(ε̄k
j − θ0)tΣ−1(ε̄k

j − θ0) and ε̄k
j =

∑k

i=j
1

(k−j)εi.

3) Finally, when an alarm is sent by the GLR algorithm, all the RLS algo-
rithms are re-initialized.

The results supplied by this algorithm are the following :

– the alarm dates supplied by the multi-dimensional GLR algorithm;
– cleaned signals estimated by the RLS algorithm;
– slopes and intercepts estimated by the RLS algorithm.

Figure 5 presents the obtained results for two engines. One abrupt change
was found for the first engine and 3 for the second; all of them seem to be
reasonable and a comparison between estimated alarm dates and recorded real
events of the engine life have confirmed this fact. The estimated signals are also
shown on these two figures.
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Fig. 5. Change detection results for engines 2 and 41. Alarms are depicted by vertical
lines, input signals are shown in light gray and signal estimates using RLS are depicted
by a black line. One variable egt is bigger than the other to present more clearly the
RLS estimate of the signal.
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4.3 Self-Organizing-Maps - SOM

The cleaned signals provided by the previous two modules are then used as
input to a SOM for visualization purpose. A [20× 20] square SOM is defined to
project the observations. The Matlab toolbox [7] was used to implement it and
the distance was carefully chosen since the standardized engine variables are very
correlated as shown by the correlation matrix in Figure 6: several correlation
coefficients have an absolute value greater than 0.6. A Mahalanobis distance
is therefore used to whiten the data. The observations are normalized and a
classical learning scheme is used to train the map.
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Fig. 6. Correlations between input variables

Figure 7 shows the map colored according to the values of the five engine
variables. It is clearly visible that the organization of the map is successful (all
variables are smoothly varying on the map).

Figure 8 presents two examples of engine trajectories on the map, which
clearly have different shapes. For the first engine, available maintenance reports
inform us that this engine suffers from an deterioration of its high pressure core.
This fault is visible on the map at the end of the trajectory: the engine which was
projected on the middle north of the map during a large part of its trajectory,
suddenly moves towards the nord-east corner of the map. This area of the map
furthermore correspond to anomalous values of the engine variables as shown
by the component plane representation of the map (see Figure 7). The second
engine which is affected by another fault has also a trajectory which is interesting
even if the interpretation is less obvious. It moves to an area characterized by a
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Fig. 7. Visualization of engine variable as map background; each cell of the map is
colored according to the value of the selected variable.

high value of the exhaust gas temperature which is known to be an indicator of
possible trouble.

The visual representations on the Kohonen map provide a synthetic and
meaningful representation for the temporal evolution of the engines. The next
step is then to characterize the different shapes of trajectories, to define a suitable
distance measure between these trajectories, and to define typical behaviors
related to typical faults. Further work will consist in defining a proper distance
between two trajectories (or parts of trajectories) in order to propose a request-
type access to the database. Taking a piece of trajectory as input, the system
will finally be able to recover the most similar trajectories of the database. Such
similar trajectories can then be used to predict the possible evolution of the
monitored engine. Edit-type distance widely used in biostatistics could be of
interest for this task.
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Fig. 8. Trajectories of engines 22 (a) and 41 (b) on the map. The sizes of the dots
are proportional to the measurement date : smallest dots correspond to recent mea-
surements, larger dots to older measurements. The colors correspond to the segments
found by the change detection algorithm (ta = 394 and 522 for engine 22; ta = 180,

249 and 291 for engine 41).
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5 Conclusion and perspectives

The method proposed in this paper is a useful tool to summarize and repre-
sent the temporal evolution of an aircraft engine health flight after flight. The
regression approach taken to deal with the problem of environmental condition
normalization seem to be effective. The joint use of an adaptive algorithm to es-
timate signal evolution (RLS) and of a change points detection method (GLR)
is also an interesting solution to deal with the non-stationarity of the signals.
Finally, Self-Organizing Maps can be used to show the engine health evolution
in a synthetic manner.
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