Skip to main content

Parallel Implementation of a Steady State Thermal and Hydraulic Analysis of Pipe Networks in OpenMP

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6068))

Abstract

The considerable computation time of a practical application of sequential algorithms for simulating thermal and flow distribution in pipe networks is the motivating factor to study their parallel implementation. The mathematical model formulated and studied in the paper requires the solution of a set of nonlinear equations, which are solved by the Newton-Raphson method. An object-oriented solver automatically formulates the equations for networks of an arbitrary topology. The hydraulic model that is chosen as a benchmark consists of nodal flows and loop equations. A general decomposition algorithm for analysis of flow and temperature distribution in a pipe network is presented, and results of speedup of its parallel implementation are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kondrashenko, V., Vinnichuk, S., Fedorov, M.: Simulation of Gas and Liquid Distributing Systems. Naukova Dumka, Kiev (1990) (in Russian)

    Google Scholar 

  2. Massoud, M.: Engineering Thermofluids. Springer, Heidelberg (2005)

    Google Scholar 

  3. Idelchik, I.E.: Handbook of Hydraulic Resistances. Machynostrojenije, Moscow (1992) (in Russian)

    Google Scholar 

  4. Fedorov, M.: On Software Design of Thermal Systems Steady State Control. Polish J. Environm. Stud. 4C, 279–283 (2008)

    Google Scholar 

  5. Donachie, R.P.: Digital Program for Water Network Analysis. J. Hydraulics Div. 100, 393–403 (1974)

    Google Scholar 

  6. Chandrashekar, M.: Extended Set of Components in Pipe Networks. J. Hydraulic Div. 106, 133–149 (1980)

    Google Scholar 

  7. Nogueira, A.C.: Steady-State Fluid Network Analysis. J. Hydraulic Eng. 119(3), 431–436 (1993)

    Article  Google Scholar 

  8. Nielsen, B.N.: Methods for Analyzing Pipe Networks. J. Hydraulic Eng. 115(2), 139–157 (1989)

    Article  Google Scholar 

  9. Altman, T., Boulos, P.F.: Convergence of Newton Method in Nonlinear Network Analysis. Mathl. Comput. Modelling 21(4), 35–41 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chandrashekar, M.: Extended Set of Components in Pipe Networks. J. Hydraulic Div. 106, 133–149 (1980)

    Google Scholar 

  11. Evdokimov, A.G.: Optimal Problems of Engineering Networks. Wyzsha Shkola, Charkov (1976) (in Russian)

    Google Scholar 

  12. Merenkov, A.P., Chasilev, V.J.: Theory of Hydraulic Circuits. Nauka, Moscow (1985) (in Russian)

    Google Scholar 

  13. Larock, B.E., Jeppson, R.W., Watters, G.Z.: Hydraulics of Pipeline Systems. CRC Press, Boca Raton (2000)

    Google Scholar 

  14. Osiadacz, A.J.: Steady-state Simulation of Gas Networks. Fluid systems Sp., Warszawa (2001) (in Polish)

    Google Scholar 

  15. Sennikova, E.V., Sidler, V.G.: Mathematical Simulation and Optimization of Evolving Heat Supply Systems. Nauka, Novosibisk (1987) (in Russian)

    Google Scholar 

  16. Stevanovic, V.D., Prica, S., Maslovaric, B., Zivkovic, B., Nikodijevic, S.: Efficient Numerical Method for District Heating System Hydraulics. Energy Conversion & Management 48, 1536–1543 (2007)

    Article  Google Scholar 

  17. Boulos, P.F., Wood, D.J.: Explicit Calculation of Pipe Network Parameters. J. Hydraulic Eng. 116, 1329–1344 (1990a)

    Article  Google Scholar 

  18. Fedorov, M.: Automation of Mathematical Model Construction for the Analysis of Heat Regimes of Heat Exchanger Systems by the Method of Gauss Convolution. Electronic Modeling 22(6), 19–25 (2000) (in Russian); Engineering Simulation vol.18, pp. 727–734 (2001) (English translation)

    Google Scholar 

  19. Fedorov, M.: Steady-State Simulation of Heat Exchanger Networks. Electronic Modeling 24(1), 101–111 (2002) (in Russian)

    Google Scholar 

  20. Filho, L.O.F., Queiroz, E.M., Costa, A.L.H.: A Matrix Approach for Steady-State Simulation of Heat Exchanger Networks. Applied Thermal Eng. 27, 2385–2393 (2007)

    Article  Google Scholar 

  21. Fedorov, M.: Thermal Modes Simulation of Heat Exchanger Networks Having Turbo-machines. In: Proceedings of the Int. Conf. on Marine Technology IV, pp. 309–314. WIT Press, Southampton (2001)

    Google Scholar 

  22. Čiegis, R., Čiegis, R., Meilūnas, M., Jankevičiūtė, G., Starikovičius, V.: Parallel mumerical algorithm for optimization of electrical cables. Mathematical Modelling and Analysis 13(4), 471–482 (2008)

    Article  MATH  Google Scholar 

  23. OpenMP Standard, http://openmp.org

  24. Altschul, A.D.: Hydraulic Resistances. Nedra, Moscow (1970) (in Russian)

    Google Scholar 

  25. Kanevets, G.E.: Heat Exchangers and Heat Exchanger Systems. Naukowa Dumka, Kiev (1982) (in Russian)

    Google Scholar 

  26. Bialecki, R.A., Kruczek, T.: Frictional Diathermal Flow of Steam in a Pipeline. Chem. Eng. Sc. 51(19), 4369–4378 (1996)

    Article  Google Scholar 

  27. Dennis, J., Schnabel, R.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Philadelphia (1996)

    MATH  Google Scholar 

  28. Rice, J.R.: Matrix computations and mathematical software. McGraw-Hill, New York (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fedorov, M. (2010). Parallel Implementation of a Steady State Thermal and Hydraulic Analysis of Pipe Networks in OpenMP. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2009. Lecture Notes in Computer Science, vol 6068. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14403-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14403-5_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14402-8

  • Online ISBN: 978-3-642-14403-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics