Skip to main content

Direct Method for Solving Parametric Interval Linear Systems with Non-affine Dependencies

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6068))

Abstract

Many real-life problems can be modelled by systems of linear equations or safely transformed to the linear case. When uncertain model parameters are introduced by intervals, then a parametric interval linear system must properly be solved to meet all possible scenarios and yield useful results. In general case, system coefficients are nonlinear functions of parameters. The Direct Method for solving such systems is proposed. Affine arithmetic is used to handle nonlinear dependencies. Some illustrative examples are solved and the results are compared to the literature data produced by other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhmerov, R.R.: Interval-affine Gaussian algorithm for constrained systems. Reliable Computing 11(5), 323–341 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alefeld, G., Frommer, A., Lang, B. (eds.) Scientific Computing and Validated Numerics. Mathematical Research 90. Proceedings of the International Symposium on Scientific Computing Computer Arithmetic and Validated Numerics (SCAN-95), Wuppertal, Germany. Akademie-Verlag (1996)

    Google Scholar 

  3. Chen, S., Lian, H., Yang, X.: Interval static displacement analysis for structures with interval parameters. International Journal for Numerical Methods in Engineering 53(2), 393–407 (2001)

    Article  Google Scholar 

  4. Fang, C.F., Chen, T., Rutenbar, R.: Floating-point error analysis based on affine arithmetic. In: Proc. 2003 International Conf. on Acoustic, Speech and Signal Processing, Part II, vol. 2, pp. 561–564 (2003)

    Google Scholar 

  5. Hansen, E.R.: A Generalised Interval Arithmetic. LNCS, vol. 29, pp. 7–18. Springer, Heidelberg (1975)

    Google Scholar 

  6. Kearfott, R.B.: Decomposition of arithmetic expressions to improve the behaviour of interval iteration for nonlinear systems. Computing 47(2), 169–191 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kolev, L.V.: An Improved Interval Linearization for Solving Nonlinear Problems. Numerical Algorithms 37(1-4), 213–224 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kolev, L.V.: New Formulae for Multiplication of Intervals. Reliable Computing 12(4), 281–292 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kolev, L.V.: Automatic Computation of a Linear Interval Enclosure. Reliable Computing 7(1), 17–28 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kolev, L.V.: A method for outer interval solution of linear parametric systems. Reliable Computing 10(3), 227–239 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kolev, L.V.: Solving Linear Systems whose Elements are Non-linear Functions of Intervals. Numerical Algorithms 37, 199–212 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kramer, W.: Generalized Intervals and the Dependency Problem. In: PAMM 2007, vol. 6(1), pp. 683–684 (2007)

    Google Scholar 

  13. Kulpa, Z., Pownuk, A., Skalna, I.: Analysis of linear mechanical structures with uncertainties by means of interval methods. Computer Assisted Mechanics and Engineering Sciences 5(4), 443–477 (1998)

    MATH  MathSciNet  Google Scholar 

  14. Kurzhanski, A.B.: Ellipsoidal calculus for uncertain dynamics. In: Abstracts of the International Conference on Interval and Computer-Algebraic Methods in Science and Engineering (INTERVAL/1994) p. 162, St. Petersburg, Russia (1994)

    Google Scholar 

  15. Messine, F.: Extentions of Affine Arithmetic: Application to Unconstrained Global Optimization. Journal of Universal Computer Science 8(11), 992–1015 (2002)

    MathSciNet  Google Scholar 

  16. Miyajima, S., Miyata, T., Kashiwagi, M.: On the Best Multiplication of the Affine Arithmetic. Transactions of the Institute of Electronics, Information and Communication Engineers J86-A(2), 150–159 (2003)

    Google Scholar 

  17. Miyajima, S., Kashiwagi, M.: A dividing method utilizing the best multiplication in affine arithmetic. IEICE Electronics Express 1(7), 176–181 (2004)

    Article  Google Scholar 

  18. Moore, R., Hansen, E., Leclerc, A.: Rigorous methods for global optimization. In: Recent Advances in Global Optimization, pp. 321–342. Princeton University Press, Princeton (1992)

    Google Scholar 

  19. Muhanna, R.L., Erdolen, A.: Geometric uncertainty in truss systems: an interval approach. In: Muhannah, R.L. (ed.) Proceedings of the NSF Workshop on Reliable Engineering Computing (REC): Modeling Errors and Uncertainty in Engineering Computations, Savannah, Georgia USA, pp. 239–247 (2006)

    Google Scholar 

  20. Nedialkov, N.S., Kreinovich, V., Starks, S.A.: Interval Arithmetic, Affine Arithmetic, Taylor Series Methods: Why, What Next? Numerical Algorithms 37(1-4), 325–336 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Neumaier, A.: Interval Methods for Systems of Equations. In: Encyclopedia of Mathematics and its Applications, pp. xvi + 255. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  22. Neumaier, A., Pownuk, A.: Linear Systems with Large Uncertainties, with Applications to Truss Structures. Reliable Computing 13(2), 149–172 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. El-Owny, H.: Parametric Linear System of Equations, whose Elements are Nonlinear Functions. In: 12th GAMM - IMACS International Symposion on Scientific Computing, Computer Arithmetic and Validated Numerics, pp. 26–29 (2006)

    Google Scholar 

  24. Popova, E.D.: On the Solution of Parametrised Linear Systems. In: Kraemer, W., von Gudenberg, J.W. (eds.) Scientific Computing, Validated Numerics, Interval Methods, pp. 127–138. Kluwer Acad. Publishers, Dordrecht (2001)

    Google Scholar 

  25. Popova, E.D.: Solving Linear Systems Whose Input Data Are Rational Functions of Interval Parameters. In: Boyanov, T., Dimova, S., Georgiev, K., Nikolov, G. (eds.) NMA 2006. LNCS, vol. 4310, pp. 345–352. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  26. Rohn, J.: A Method for Handling Dependent Data in Interval Linear Systems. Academy of Science of the Czech Republic, Institute of Computer Science, Technical report No. 911 (2004)

    Google Scholar 

  27. Rump, S.M.: Verification Methods for Dense and Sparse Systems of Equations. In: Herzberger, J. (ed.) Topics in Validated Computations – Studies in Computational Mathematics, pp. 63–136. Elsevier, Amsterdam (1994)

    Google Scholar 

  28. Shary, S.P.: Solving tied interval linear systems. Siberian Journal of Computational Mathematics 7(4), 363–376 (2004)

    MATH  Google Scholar 

  29. de Figueiredo, L.H., Stolfi, J.: Self-Validated Numerical Methods and Applications. Brazilian Mathematics Colloquium monograph (1997)

    Google Scholar 

  30. Skalna, I.: A method for outer interval solution of systems of linear equations depending linearly on interval parameters. Reliable Computing 12(2), 107–120 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Skalna, I.: Evolutionary optimization method for approximating the solution set hull of parametric linear systems. In: Boyanov, T., Dimova, S., Georgiev, K., Nikolov, G. (eds.) NMA 2006. LNCS, vol. 4310, pp. 361–368. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  32. Vu, X., Sam-Haroud, D., Faltings, B.V.: A Generic Scheme for Combining Multiple Inclusion Representations in Numerical Constraint Propagation. Artificial Intelligence Laboratory, Swiss Federal Institute of Technology in Lausanne (EPFL), Technical Report No. IC/2004/39 (2004)

    Google Scholar 

  33. http://www.ic.unicamp.br/~stolfi/EXPORT/projects/affine-arith/Welcome.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Skalna, I. (2010). Direct Method for Solving Parametric Interval Linear Systems with Non-affine Dependencies. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2009. Lecture Notes in Computer Science, vol 6068. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14403-5_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14403-5_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14402-8

  • Online ISBN: 978-3-642-14403-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics