Skip to main content

Artificial Intelligence of Virtual People in CA FF Pedestrian Dynamics Model

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6068))

  • 1004 Accesses

Abstract

This paper deals with mathematical model of pedestrian flows. We focus here on an “intelligence” of virtual people. From macroscopic viewpoint pedestrian dynamics is already well simulated but from microscopic point of view typical features of people movement need to be implemented to models. At least such features are “keeping in mind” two strategies – the shortest path and the shortest time and keeping a certain distance from other people and obstacles if it is possible. In this paper we implement mathematical formalization of these features to stochastic cellular automata (CA) Floor Field (FF) model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Helbing, D.: Traffic related self-driven many-particle systems. Rev. Mod. Phys. 73(4), 1067–1141 (2001)

    Article  Google Scholar 

  2. Henein, C.M., White, T.: Macroscopic effects of microscopic forces between agents in crowd models. Physica A 373, 694–718 (2007)

    Article  Google Scholar 

  3. Kirik, E., Yurgel’yan, T., Krouglov, D.: An intelligent floor field cellular automation model for pedestrian dynamics. In: Proceedings of The Summer Computer Simulation Conference 2007. The Mission Valley Marriott San Diego, California, pp. 1031–1036 (2007)

    Google Scholar 

  4. Kirik, E., Yurgel’yan, T., Krouglov, D.: The Shortest Time and/or the Shortest Path Strategies in a CA FF Pedestrian Dynamics Model. Journal of Siberian Federal University, Mathematics and Physics 2(3), 271–278 (2009)

    Google Scholar 

  5. Malinetskiy, G.G., Stepantcov, M.E.: An application of cellular automation for people dynamics modelling. Journal of Computational Mathematics and Mathematical Physics 44(11), 2108–2112 (2004)

    Google Scholar 

  6. Nishinari, K., Kirchner, A., Namazi, A., Schadschneider, A.: Extended floor field CA model for evacuation dynamics. IEICE Trans. Inf. & Syst. E87-D, 726 (2004)

    Google Scholar 

  7. Parzen, E.: On estimation of probability Density Function. Ann. Math. Stat. 33, 1065–1076 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  8. Rosenblat, M.: Remarks on some non-parametric estimates of a density function. Ann. Math. Stat. 27, 832–837 (1956)

    Article  Google Scholar 

  9. Schadschneider, A., Seyfried, A.: Validation of CA models of pedestrian dynamics with fundamental diagrams. Cybernetics and Systems 40(5), 367–389 (2009)

    Article  MATH  Google Scholar 

  10. Yanagisawa, D., Nishinari, K.: Mean-field theory for pedestrian outflow through an exit. Physical review E76, 061117 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kirik, E., Yurgel’yan, T., Krouglov, D. (2010). Artificial Intelligence of Virtual People in CA FF Pedestrian Dynamics Model. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2009. Lecture Notes in Computer Science, vol 6068. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14403-5_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14403-5_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14402-8

  • Online ISBN: 978-3-642-14403-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics