Abstract
The dimension of modern distributed systems is growing everyday. This phenomenon has generated several management problems due to the increase in complexity and in the needs of energy. Self-organizing architectures showed to be able to deal with this complexity by making global system features emerge without central control or the need of excessive computational power. Up to now research has been mainly focusing on identifying self-* techniques that operate during the achievement of the regular functional goals of software. Little effort, however, has been put on finding effective methods for energy usage optimization. Our work focuses specifically on this aspect and proposes a bio-inspired self-organization algorithm to redistribute load among servers in data centers. We show, first, how the algorithm redistributes the load, thus allowing a better energy management by turning off servers, and, second, how it may be integrated in a self-organizing architecture. The approach naturally complements existing self-management capabilities of a distributed self-organizing architecture, and provides a solution that is able to work even for very large systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Camazine, S., et al.: Self-organization in biological systems. Princeton University Press, Princeton (2001)
Devescovi, D., Di Nitto, E., Dubois, D.J., Mirandola, R.: Self-Organization Algorithms for Autonomic Systems in the SelfLet Approach. In: Autonomics, ICST (2007)
Bindelli, S., Di Nitto, E., Furia, C., Rossi, M.: Using Compositionality to Formally Model and Analyze Systems Built of a High Number of Components. In: 15th IEEE International Conference on Engineering of Complex Computer Systems. IEEE Computer Society, Los Alamitos (2010)
Capra, E., Merlo, F.: Green IT: Everything strarts from the software. In: ECIS 2009: Proceedings of the 17th European Conference on Information Systems (2009)
Das, R., Kephart, J.O., Lefurgy, C., Tesauro, G., Levine, D.W., Chan, H.: Autonomic multi-agent management of power and performance in data centers. In: AAMAS 2008: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, Richland, SC, International Foundation for Autonomous Agents and Multiagent Systems, pp. 107–114 (2008)
Murugesan, S.: Harnessing green IT: Principles and practices. IT Professional 10(1), 24–33 (2008)
Kumar, R.: Important power, cooling and green IT concerns. Technical report, Gartner (January 2007)
Brown, E., Lee, C.: Topic overview: Green IT. Technical report, Forrester Research (November 2007)
Josselyin, S., Dillon, B., Nakamura, M., Arora, R., Lorenz, S., Meyer, T., Maceska, R., Fernandez, L.: Worldwide and regional server 2006-2010 forecast. Technical report, IDC (November 2006)
Lamb, J.: The Greening of IT: How Companies Can Make a Difference for the Environment. IBM Press (2009)
Kurp, P.: Green computing. Commun. ACM 51(10), 11–13 (2008)
Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)
Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Book (2004)
Saffre, F., Tateson, R., Marrow, P., Halloy, J., Deneurbourg, J.L.: Rule-based modules for collective decision-making using autonomous unit rules and inter-unit communication. Technical report, Deliverable 3.5 - IP CASCADAS (2008)
Greenberg, A., Hamilton, J., Maltz, D.A., Patel, P.: The cost of a cloud: research problems in data center networks. SIGCOMM Comput. Commun. Rev. 39(1), 68–73 (2009)
Jelasity, M., Montresor, A., Jesi, G.P., Voulgaris, S.: The Peersim simulator, http://peersim.sf.net
LpSolve, a Mixed Integer Linear Programming (MILP) solver, http://lpsolve.sourceforge.net
Chase, J.S., Anderson, D.C., Thakar, P.N., Vahdat, A.M., Doyle, R.P.: Managing energy and server resources in hosting centers. SIGOPS Oper. Syst. Rev. 35(5), 103–116 (2001)
Bohrer, P., Elnozahy, E.N., Keller, T., Kistler, M., Lefurgy, C., McDowell, C., Rajamony, R.: The case for power management in web servers. Kluwer Academic Publishers, Norwell (2002)
Lefurgy, C., Rajamani, K., Rawson, F., Felter, W., Kistler, M., Keller, T.W.: Energy management for commercial servers. Computer 36(12), 39–48 (2003)
Pinheiro, E., Bianchini, R., Carrera, E.V., Heath, T.: Load balancing and unbalancing for power and performance in cluster–based systems. In: Proceedings of the Workshop on Compilers and Operating Systems for Low Power (2001)
Elnozahy, E.N.M., Kistler, M., Rajamony, R.: Energy-efficient server clusters. In: Falsafi, B., VijayKumar, T.N. (eds.) PACS 2002. LNCS, vol. 2325, pp. 179–196. Springer, Heidelberg (2003)
White, R., Abels, T.: Energy resource management in the virtual data center. In: ISEE 2004: Proceedings of the International Symposium on Electronics and the Environment, Washington, DC, USA, pp. 112–116. IEEE Computer Society, Los Alamitos (2004)
Khargharia, B., Hariri, S., Yousif, M.S.: Autonomic power and performance management for computing systems. Cluster Computing 11(2), 167–181 (2007)
Bennani, M., Menasce, D.: Resource allocation for autonomic data centers using analytic performance models. In: Proceedings of the Second International Conference on Autonomic Computing, ICAC 2005, pp. 229–240 (June 2005)
Pasteels, J., Deneubourg, J., Goss, S.: Self-organization mechanisms in ant societies (i): trail recruitment to newly discovered food sources. In: Pasteels, J.M., Deneubourg, J.L. (eds.) From Individual to Collective Behavior in Social Insects. Experientia Supplementum, vol. 54, pp. 155–175. Birkhaüser, Basel (1987)
Nicolis, S., et al.: Optimality of collective choices: a stochastic approach. Bulletin of Mathematical Biology 65, 795–808 (2003)
Babaoglu, O., Canright, G., Deutsch, A., Caro, G.A.D., Ducatelle, F., Gambardella, L.M., Ganguly, N., Jelasity, M., Montemanni, R., Montresor, A., Urnes, T.: Design patterns from biology for distributed computing. ACM Trans. Auton. Adapt. Syst. 1(1), 26–66 (2006)
di Nitto, E., Dubois, D.J., Mirandola, R.: On exploiting decentralized bio-inspired self-organization algorithms to develop real systems. In: International Workshop on Software Engineering for Adaptive and Self-Managing Systems, pp. 68–75 (2009)
Serugendo, G.D.M., Karageorgos, A., Rana, O.F., Zambonelli, F. (eds.): ESOA 2003. LNCS (LNAI), vol. 2977. Springer, Heidelberg (2004)
Nakano, T., Suda, T.: Applying biological principles to designs of network services. Appl. Soft Comput. 7(3), 870–878 (2007)
Hariri, X.D., Xue, S.L., Chen, H., Zhang, M., Pavuluri, S., Rao, S.: Autonomia: an autonomic computing environment. In: IEEE International Performance, Computing, and Communications Conference (2003)
Parashar, M., Liu, H., Li, Z., Matossian, V., Schmidt, C., Zhang, G., Hariri, S.: Automate: Enabling autonomic applications on the grid. Cluster Computing 9(2), 161–174 (2006)
Hoefig, E., Wuest, B., Benko, B.K., Mannella, A., Mamei, M., Di Nitto, E.: On concepts for autonomic communication elements. In: International Workshop on Modelling Autonomic Communications (2006)
De Pellegrini, F., Miorandi, D., Linner, D., Bacsardi, L., Moiso, C.: Bionets architecture: from networks to serworks. In: Bio-Inspired Models of Network, Information and Computing Systems, Bionetics 2007, pp. 255–262 (December 2007)
Babaoglu, O., Meling, H., Montresor, A.: Anthill: A framework for the development of agent-based peer-to-peer systems. In: International Conference on Distributed Computing Systems, p. 15 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Barbagallo, D., Di Nitto, E., Dubois, D.J., Mirandola, R. (2010). A Bio-inspired Algorithm for Energy Optimization in a Self-organizing Data Center. In: Weyns, D., Malek, S., de Lemos, R., Andersson, J. (eds) Self-Organizing Architectures. SOAR 2009. Lecture Notes in Computer Science, vol 6090. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14412-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-14412-7_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14411-0
Online ISBN: 978-3-642-14412-7
eBook Packages: Computer ScienceComputer Science (R0)