Abstract
The central notion of a rough set is the indiscernibility that is based on an equivalence relation. Because an equivalence relation shows strong bondage in an equivalence class, it forms a Galois connection and the difference between the upper and lower approximations is lost. Here, we introduce two different equivalence relations, one for the upper approximation and one for the lower approximation, and construct a composite approximation operator consisting of different equivalence relations. We show that a collection of fixed points with respect to the operator is a lattice and there exists a representation theorem for that construction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pawlak, Z.: Information systems-theoretical foundations. Information Systems 6, 205–218 (1981)
Pawlak, Z.: Rough Sets. Intern. J. Comp. Inform. Sci. 11, 341–356 (1982)
Birkhoff, G.: Lattice Theory, Coll. Publ., XXV. American Mathematical Society, Providence (1967)
Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambrdige (2002)
Polkowski, L.: Rough Sets. In: Mathematical Foundations. Physical-Verlag/Springer, Heidelberg (2002)
Doherty, P., Lyukaszewicz, W., Skowron, A., Szalas, A.: Knowledge Representation Techniques. In: A rough Set Approach. Springer, Berlin (2006)
Orlowska, E.: Logic approach to information systems. Fundamenta Informaticae 8, 359–378 (1985)
Vakarelov, D.: Modal logic for knowledge representation systems. In: Meyer, A.R., Taitslin, M.A. (eds.) Logic at Botik 1989. LNCS, vol. 363, pp. 257–277. Springer, Heidelberg (1989)
Orlowska, E.: Modal logics in the theory of information systems. Z. Math. Logik u. Grund. d. Math. 30, 213–222 (1984)
Järvinen, J.: Pawlakfs information systems in terms of Galois connections and functional dependencies. Fundamenta Informaticae 75, 315–330 (2007)
Järvinen, J., Kondo, M., Kortelainen, J.: Modal-like operators in Boolean lattices, Galois connections and fixed points. Fundamenta Informaticae 76, 129–145 (2007)
Järvinen, J.: Lattice theory for rough sets. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J.W., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 400–498. Springer, Heidelberg (2007)
Yao, Y.Y.: A comparative study of formal concept analysis and rough set theory in data analysis. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 59–68. Springer, Heidelberg (2004)
Yao, Y.Y.: Concept lattices in rough set theory. In: Fuzzy Information, Processing NAFIPS f04, vol. 2, pp. 796–801 (2004)
Gediga, G., Düntsch, I.: Modela-style operators in qualitative data analysis. In: Proceedings of the 2002 IEEE International Conference on Data Mining, pp. 155–162 (2002)
Yao, Y.Y., Wong, S.K.M., Lin, T.Y.: A review of rough set models. In: Lin, T.Y., Cercone, N. (eds.) Rough Sets and Data Mining: Analysis for Imprecise Data, pp. 47–75. Kluwer Academic Pub., Boston (1997)
Ore, O.: Galois connexions. Transactions of American Mathematical Society 55, 493–513 (1944)
Pawlak, Z.: Rough Sets. In: Theoretical Aspects of Reasoning about Data. Kluwer Academic Pub., Boston (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Gunji, YP., Haruna, T. (2010). A Non-boolean Lattice Derived by Double Indiscernibility. In: Peters, J.F., Skowron, A., Słowiński, R., Lingras, P., Miao, D., Tsumoto, S. (eds) Transactions on Rough Sets XII. Lecture Notes in Computer Science, vol 6190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14467-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-14467-7_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14466-0
Online ISBN: 978-3-642-14467-7
eBook Packages: Computer ScienceComputer Science (R0)