Abstract
We address in this work problems of path planning for autonomous robots; we extend this topic by introducing a new definition of a robot formation and we give a parallel treatment of planning and navigation problems for robot formations. In our investigations into problems of multi-robot planning and navigation, we apply rough mereological theory of spatial reasoning to problems of formations of many robots in a rigorous way and we address the planning and navigation problems for formations of many robots.
In approaching those problems, we employ rough mereology – a theory for approximate reasoning based on the notion of a part to a degree. Using the primitive predicate of a rough inclusion, we construct counterparts of classical predicates of elementary geometry as introduced by Alfred Tarski, which serve us in building a description of robot environment.
The software system Player/Stage is employed as the environment in which predicates of rough mereological geometry are implemented as SQL functions and as means of simulation and visualization of robot trajectories to chosen goals.
This work does extend the scope of the Special Session on Rough Mereology at RSKT 2008, Chengdu, Sichuan, China, May 2008.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arkin, R.C.: Behavior–Based Robotics. MIT Press, Cambridge (1998)
Balch, T., Arkin, R.C.: Behavior–based formation control for multirobot teams. IEEE Transactions on Robotics and Automation 14(6), 926–939 (1998)
van Benthem, J.: The Logic of Time. Reidel, Dordrecht (1983)
Brumitt, B., Stentz, A., Hebert, M.: CMU UGV Group: Autonomous driving with concurrent goals and multiple vehicles: Mission planning and architecture. Autonomous Robots 11, 103–115 (2001)
Uny Cao, Y., Fukunaga, A.S., Kahng, A.B.: Cooperative mobile robotics: Antecedents and directions. Autonomous Robots 4, 7–27 (1997)
Chen, Q., Luh, J.Y.S.: Coordination and control of a group of small mobile robots. In: Proceedings of IEEE Intern. Conference on Robotics and Automation, pp. 2315–2320 (1998)
Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., Thrun, S.: Principles of Robot Motion. In: Theory, Algorithms, and Implementations. MIT Press, Cambridge (2005)
Clarke, B.L.: A calculus of individuals based on connection. Notre Dame Journal of Formal Logic 22(2), 204–218 (1981)
Das, A., Fierro, R., Kumar, V., Ostrovski, J.P., Spletzer, J., Taylor, C.J.: A vision-based formation control framework. IEEE Transactions on Robotics and Automation 18(5), 813–825 (2002)
Gotts, N.M., Gooday, J.M., Cohn, A.G.: A connection based approach to commonsense topological description and reasoning. The Monist 79(1), 51–75 (1996)
Khatib, O.: Real–time obstacle avoidance for manipulators and mobile robots. In: Proceedings IEEE Intern. Conf. on Robotics and Automation, St. Louis MO, pp. 500–505 (1986); Also see: International Journal of Robotic Research 5, 90–98 (1986)
Kramer, J., Scheutz, M.: Development environments for autonomous mobile robots: A survey. Autonomous Robots 22, 101–132 (2007)
Krogh, B.: A generalized potential field approach to obstacle avoidance control, SME-I Technical paper MS84–484, Society of Manufacturing Engineers, Dearborn MI (1984)
Kuipers, B.I., Byun, Y.T.: A qualitative approach to robot exploration and map learning. In: Proceedings of the IEEE Workshop on Spatial Reasoning and Multi-Sensor Fusion, pp. 390–404. Morgan Kaufmann, San Mateo (1987)
Ladanyi, H.: SQL Unleashed. Sams Publishing, USA (1997)
De Laguna, T.: Point, line, surface as sets of solids, J. Philosophy 19, 449–461 (1922)
Latombe, J.: Robot Motion Planning. Kluwer, Boston (1991)
Ehrich Leonard, N., Fiorelli, E.: Virtual leaders, artificial potentials and coordinated control of groups. In: Proceedings of the 40th IEEE Conference on Decision and Control, Orlando Fla, pp. 2968–2973 (2001)
Leonard, H., Goodman, N.: The calculus of individuals and its uses. The Journal of Symbolic Logic 5, 45–55 (1940)
Leśniewski, S.: O Podstawach Ogolnej Teorii Mnogosci (On Foundations of General Theory of Sets. The Polish Scientific Circle in Moscow, Moscow (1916) (in Polish)
Leśniewski, S.: Grundzüge eines neuen Systems der Grundlagen der Mathematik. Fundamenta Mathematicae 24, 242–251 (1926)
Leśniewski, S.: Über die Grundlegen der Ontologie. C.R. Soc. Sci. Lettr. Varsovie III, 111–132 (1930)
Leśniewski, S.: On the Foundations of Mathematics. Przegla̧d Filozoficzny 30, 164–206 (1927) (in Polish); 31, 261–291 (1928); 32, 60–101 (1929); 33, 77–105 (1930); 34, 142–170 (1931)
Leśniewski, S.: On the foundations of mathematics. Topoi 2, 7–52 (1982)
Ośmiałowski, P.: Player and Stage at PJIIT Robotics Laboratory. Journal of Automation, Mobile Robotics and Intelligent Systems 2, 21–28 (2007)
Ośmiałowski, P.: On path planning for mobile robots: Introducing the mereological potential field method in the framework of mereological spatial reasoning. Journal of Automation, Mobile Robotics and Intelligent Systems 3(2), 24–33 (2009)
Ośmiałowski, P., Polkowski, L.: Spatial reasoning based on rough mereology: path planning problem for autonomous mobile robots. In: Transactions on Rough Sets. LNCS (in print)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht (1991)
Player/Stage, http://playerstage.sourceforge.net
Polkowski, L.: On connection synthesis via rough mereology. Fundamenta Informaticae 46, 83–96 (2001)
Polkowski, L.: A rough set paradigm for unifying rough set theory and fuzzy set theory (a plenary lecture). In: Proceedings RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 70–78. Springer, Heidelberg (2003)
Polkowski, L.: Toward rough set foundations. Mereological approach (a plenary lecture). In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 8–25. Springer, Heidelberg (2004)
Polkowski, L.: A unified approach to granulation of knowledge and granular computing based on rough mereology: A survey. In: Pedrycz, W., Skowron, A., Kreinovich, V. (eds.) Handbook of Granular Computing, pp. 375–400. John Wiley and Sons, Chichester (2008)
Polkowski, L., Ośmiałowski, P.: Spatial reasoning with applications to mobile robotics. In: Jing, X.-J. (ed.) Mobile Robots Motion Planning. New Challenges, pp. 43–55. I-Tech Education and Publishing KG, Vienna (2008)
Polkowski, L., Ośmiałowski, P.: A framework for multiagent mobile robotics: Spatial reasoning based on rough mereology in Player/stage system. In: Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) RSCTC 2008. LNCS (LNAI), vol. 5306, pp. 142–149. Springer, Heidelberg (2008)
Polkowski, L., Skowron, A.: Rough mereology: a new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15(4), 333–365 (1997)
Polkowski, L., Skowron, A.: Rough mereology in information systems with applications to qualitative spatial reasoning. Fundamenta Informaticae 43, 291–320 (2000)
Ramsey, P.: PostGIS Manual, In: Postgis. pdf file downloaded from Refractions Research home page
Shao, J., Xie, G., Yu, J., Wang, L.: Leader–following formation control of multiple mobile robots. In: Proceedings of the 2005 IEEE Intern. Symposium on Intelligent Control, Limassol, Cyprus, pp. 808–813 (2005)
Skowron, A., Rauszer, C.: The discernibility matrices and functions in decision systems. In: Słowiński, R. (ed.) Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory, pp. 311–362. Kluwer, Dordrecht (1992)
sfsexp, http://sexpr.sourceforge.net
Sugihara, K., Suzuki, I.: Distributed motion coordination of multiple mobile robots. In: Proceedings 5th IEEE Intern. Symposium on Intelligent Control, Philadelphia PA, pp. 138–143 (1990)
Švestka, P., Overmars, M.H.: Coordinated path planning for multiple robots. Robotics and Autonomous Systems 23, 125–152 (1998)
Tarski, A.: Les fondements de la géométrie des corps. In: Supplement to Annales de la Sociéte Polonaise de Mathématique, Cracow, pp. 29–33 (1929)
Tarski, A.: What is elementary geometry? In: The Axiomatic Method with Special Reference to Geometry and Physics, pp. 16–29. North-Holland, Amsterdam (1959)
Tribelhorn, B., Dodds, Z.: Evaluating the Roomba: A low-cost, ubiquitous platform for robotics research and education. In: 2007 IEEE International Conference on Robotics and Automation, ICRA 2007, Roma, Italy, April 10-14, pp. 1393–1399 (2007)
Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)
Urdiales, C., Perez, E.J., Vasquez-Salceda, J., Sànchez-Marrè, M., Sandoval, F.: A purely reactive navigation scheme for dynamic environments using Case–Based Reasoning. Autonomous Robots 21, 65–78 (2006)
Whitehead, A.N.: Process and Reality. In: An Essay in Cosmology. Macmillan, New York (1929); (corr. ed.: Griffin, D. R., Sherbourne, D. W. (eds.) (1978))
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
O’smiaıowski, P., Polkowski, L. (2010). Spatial Reasoning Based on Rough Mereology: A Notion of a Robot Formation and Path Planning Problem for Formations of Mobile Autonomous Robots. In: Peters, J.F., Skowron, A., Słowiński, R., Lingras, P., Miao, D., Tsumoto, S. (eds) Transactions on Rough Sets XII. Lecture Notes in Computer Science, vol 6190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14467-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-14467-7_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14466-0
Online ISBN: 978-3-642-14467-7
eBook Packages: Computer ScienceComputer Science (R0)