Abstract
This survey paper studies recent advances in the field of Leakage-Resilient Cryptography. This booming area is concerned with the design of cryptographic primitives resistant to arbitrary side-channel attacks, where an attacker can repeatedly and adaptively learn information about the secret key, subject only to the constraint that the overall amount of such information is bounded by some parameter ℓ. We start by surveying recent results in the so called Relative Leakage Model, where all the parameters of the system are allowed to depend on ℓ, and the goal is to make ℓ large relative to the length of the secret key. We conclude by showing how to extend the relative leakage results to the Bounded Retrieval Model (aka “Absolute Leakage Model”), where only the secret key length is allowed to be slightly larger than ℓ, but all other system parameters (e.g., public-key, communication, etc.) are independent of the absolute value of ℓ. Throughout the presentation we will emphasize the information-theoretic techniques used in leakage-resilient cryptography.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to signatures via the fiat-shamir transform: Minimizing assumptions for security and forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 418–433. Springer, Heidelberg (2002)
Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key encryption in the bounded-retrival model (2009), http://eprint.iacr.org/2009/512
Aumann, Y., Ding, Y.Z., Rabin, M.O.: Everlasting security in the bounded storage model. IEEE Transactions on Information Theory 48(6), 1668–1680 (2002)
Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the bounded-retrieval model. In: Halevi, S. (ed.) Advances in Cryptology - CRYPTO 2009. LNCS, vol. 5677, pp. 36–54. Springer, Heidelberg (2009)
Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444. Springer, Heidelberg (2009)
Aumann, Y., Rabin, M.O.: Information theoretically secure communication in the limited storage space model. Wiener [Wie99], pp. 65–79 (1999)
Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Transactions on Information Theory 41(6), 1915–1923 (1995)
Bennett, C.H., Brassard, G., Robert, J.-M.: Privacy amplification by public discussion. SIAM J. Comput. 17(2), 210–229 (1988)
Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults (extended abstract). In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)
Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: A password-based protocol secure against dictionary attacks and password file compromise. In: ACM Conference on Computer and Communications Security, pp. 244–250 (1993)
Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key exchange using diffie-hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 156–171. Springer, Heidelberg (2000)
Boneh, D. (ed.): CRYPTO 2003. LNCS, vol. 2729. Springer, Heidelberg (2003)
Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2000)
Brickell, E.F. (ed.): CRYPTO 1992. LNCS, vol. 740. Springer, Heidelberg (1993)
Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Jr. [Jr.97], pp. 513–525 (1997)
Cash, D., Ding, Y.Z., Dodis, Y., Lee, W., Lipton, R.J., Walfish, S.: Intrusion-resilient key exchange in the bounded retrieval model. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 479–498. Springer, Heidelberg (2007)
Canetti, R., Dodis, Y., Halevi, S., Kushilevitz, E., Sahai, A.: Exposure-resilient functions and all-or-nothing transforms. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 453–469. Springer, Heidelberg (2000)
Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)
Di Crescenzo, G., Lipton, R.J., Walfish, S.: Perfectly secure password protocols in the bounded retrieval model. In: Halevi, Rabin (eds.) [HR06], pp. 225–244 (2006)
Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)
Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2004)
Dodis, Y., Goldwasser, S., Kalai, Y., Peikert, C., Vaikuntanathan, V.: Public-key encryption schemes with auxiliary inputs (2009)
Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC, pp. 621–630 (2009)
Dodis, Y., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extractors and authenticated key agreement from close secrets. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 232–250. Springer, Heidelberg (2006)
Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)
Dziembowski, S., Pietrzak, K.: Intrusion-resilient secret sharing. In: FOCS, pp. 227–237. IEEE Computer Society, Los Alamitos (2007)
Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS, pp. 293–302. IEEE Computer Society, Los Alamitos (2008)
Dodis, Y., Sahai, A., Smith, A.: On perfect and adaptive security in exposure-resilient cryptography. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 301–324. Springer, Heidelberg (2001)
Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography from weak secrets. In: STOC (2009), Full version, http://eprint.iacr.org/2008/503
Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Halevi, Rabin (eds.) [HR06], pp. 207–224 (2006)
Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.: Leakage-resilient signatures (2009), http://eprint.iacr.org/2009/282
Faust, S., Reyzin, L., Tromer, E.: Protecting circuits from computationally-bounded leakage. Cryptology ePrint Archive, Report 2009/379 (2009), http://eprint.iacr.org/
Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)
Feige, U., Shamir, A.: Zero Knowledge Proofs of Knowledge in Two Rounds. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544. Springer, Heidelberg (1990)
Goldreich, O., Lindell, Y.: Session-key generation using human passwords only. J. Cryptology 19(3), 241–340 (2006)
Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)
Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity for all languages in np have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991)
Halevi, S., Rabin, T. (eds.): TCC 2006. LNCS, vol. 3876, pp. 1–20. Springer, Heidelberg (2006)
Alex Halderman, J., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold boot attacks on encryption keys. In: van Oorschot, P.C. (ed.) USENIX Security Symposium, pp. 45–60. USENIX Association (2008)
Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits ii: Keeping secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 308–327. Springer, Heidelberg (2006)
Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against probing attacks. In: Boneh [Bon03], pp. 463–481 (2003)
Kaliski Jr., B.S. (ed.): CRYPTO 1997. LNCS, vol. 1294, pp. 1–15. Springer, Heidelberg (1997)
Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener [Wie99], pp. 388–397 (1999)
Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)
Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001)
Kiltz, E., Pietrzak, K., Stam, M., Yung, M.: A new randomness extraction paradigm for hybrid encryption. In: Ghilardi, S. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 590–609. Springer, Heidelberg (2009)
Kanukurthi, B., Reyzin, L.: Key agreement from close secrets over unsecured channels. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479. Springer, Heidelberg (2009), Full version, http://eprint.iacr.org/2008/494
Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912. Springer, Heidelberg (2009), http://www.mit.edu/~vinodv/papers/asiacrypt09/KV-Sigs.pdf
Lamport, L.: Constructing digital signatures from a one-way function. Technical report, SRI International (October 1979)
Lu, C.-J.: Hyper-encryption against space-bounded adversaries from on-line strong extractors. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 257–271. Springer, Heidelberg (2002)
Maurer, U.M.: Conditionally-perfect secrecy and a provably-secure randomized cipher. J. Cryptology 5(1), 53–66 (1992)
Maurer, U.M.: Protocols for secret key agreement by public discussion based on common information. In: Brickell [Bri93], pp. 461–470 (1993)
Micali, S., Reyzin, L.: Physically observable cryptography (extended abstract). In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)
Maurer, U.M., Wolf, S.: Privacy amplification secure against active adversaries. In: Jr. [Jr.97], pp. 307–321 (1997)
Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi, S. (ed.) Advances in Cryptology - CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009), http://eprint.iacr.org/2009/105
Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: STOC, pp. 33–43. ACM, New York (1989)
Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci. 52(1), 43–52 (1996)
Okamoto, T.: Provably secure and practical identification schemes and corresponding signature schemes. In: Brickell[Bri93], pp. 31–53 (1993)
Pietrzak, K.: A leakage-resilient mode of operation. In: Eurocrypt 2009, Cologne, Germany, pp. 462–482 (2009)
Quisquater, J.-J., Samyde, D.: Electromagnetic analysis (ema): Measures and counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) STOC, pp. 84–93. ACM, New York (2005)
Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: STOC, pp. 387–394. ACM, New York (1990)
Renner, R., Wolf, S.: Unconditional authenticity and privacy from an arbitrarily weak secret. In: Boneh[Bon03], pp. 78–95 (2003)
Vadhan, S.P.: Constructing locally computable extractors and cryptosystems in the bounded-storage model. J. Cryptology 17(1), 43–77 (2004)
Wiener, M. (ed.): CRYPTO 1999. LNCS, vol. 1666. Springer, Heidelberg (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Alwen, J., Dodis, Y., Wichs, D. (2010). Survey: Leakage Resilience and the Bounded Retrieval Model. In: Kurosawa, K. (eds) Information Theoretic Security. ICITS 2009. Lecture Notes in Computer Science, vol 5973. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14496-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-14496-7_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14495-0
Online ISBN: 978-3-642-14496-7
eBook Packages: Computer ScienceComputer Science (R0)